Interactive Fortran 77
A Hands on Approach

Second edition

lan D Chivers

Jane Sleightholme

© lan D Chivers andJaneSleightholme

Unlessotherwisespecifed, lan D Chivers and JaneSleighthoime
hold all rights, including copyiight and retains such rights. This
work may be distributedin its entirety provided the work is dis-
tributedasa whole with this copyiight notice intact

This work may not be distributedin hard copy or other machine
readakd form, redistrbuted, transmited or trandated without
prior written authorzation from lan D Chivers and Jane
Slegghtholme.

Commecial use canonly be allowed by specific licenseagree
ments.The accuracy of this docunment cannotbe guaanteed.lan
D ChiversandJaneSeighthone make no warranty, eitherexpress
or implied, with regect to the use of any informaton and as
sumes no liabilities for loss or damage,wheher such loss or
damagds caugd by emror or omission.

Information aboutthe Fortran 90 version is availableat
http//www .kcl.acuk/kis/supportc/fortran/f90hone.htm

to Joanand Martin
to Mark and Jonathan
to Glasgav

‘Flourish’

Prefaceto First Edition

Theaim of this book is to introduce the coneepts ard ideas involved in problem
solving with Fortran 77 using an interactive timeshaing computer systen. The
bodk tries to achieve this using the establishel practices of strudured and
moduar programming. Two techniquesof problem soling, socdled top-down
and bottom-upare alsointroduced

The book has been dewelopal from a one week full-time course on program-
ming, given seeral times a yea at Imperial College to a vatiety of students,
both uncergradude and postgraduate. The courseitsdf is a mixture of

* Ledures

e Tutorials

¢ Temind sessions
* Reading

All work on the courseis donein small groups,ard the stucerts have the
opton of working in pars. Initially, stucerts are shy abou shaving their igno
rance, but quickly overcome this and learn a lot by hdping one arother out ard
articulating therr problems. This is regarded as an essential part of the course.

The sudent is assuned to complete a minimum nunbe of the problens. Expe
rierce on caurses ove seweral yeas has showvn the authors tha only by
completing problens fully does the stuent get a redistic idea of the process of
prablem solving using a programming language. It is therefore recommerded
that all problens attempted are completed. Certain of the problems are usel as
a bass for further development in the course. This hdps to reinforce the ideas
of problemsoling introdwed earlier.

The authors are pleasedto provide more details of the course to interesed par
ties.

lan D. Chivers
Malcolm W. Clark

1944

Preface to Second Edition

As most teache's know ther ideas of how to approach a sulject gradudly
changewith time, for a variety of reasors. This edition reflects changes in four
main areas

e aconmplete rewrite of the problem solving chepter;

e anew chaper on progamming larmguages with an extensive bibli-
ogaphy; firstly as background material for the inquisitive reacer,
seondly to show theway Fortran hasevolved ard is still evolving
by the incorporaion of moden language constuds. This is be
coming inaeasingly necessay given the current state of the pro-
posed Fortran 8x stardad;

e an alternate introdwction to arrays more apprqoriate to a wider
range of students.

e aconmplete revamp of Appendix E, to provide a complete list of
fundionsin Fortran 77 with desciptionsand examples.

Minor charges have been mace throughou the book, reflecting the feedbadk we
have had from the students over the yeas, at a number of cdleges.

There are of caurseseeral corredions, and we are tharkful to the many stu
dents who hawe pointed them out with great relish! We expect the sane
enthusissmfrom students in pointing out the mistakesin this edition.

The first edition was prepared ard typesé using the Draft Formet text process
ing sotware running on a variety of CDC Cybea 600 Seies computers at
Imperial College Find output was to an APS 1 5 typesetter.

The Draft Format version was then trarsfered to an IBM PS/2Modd 60 rurn-
ning Ventura Publshe. Origind output was to a variety of postcript lase
printers, and find camera ready copy was olbtained using the Linotron 300
typesetter at the University of London Conputer Centre.

Ourtharks to the stucerts at King's College for their comments on the dréts of
this edtion, and to UNEP for the useof a variety of fadlitiesat the Monitoring
and Assessmat Research Centre, Londbn, whilst on a very stimulating and
enjoyable seondmert.

lan D. Chivers
Jare M. Sleghthome

1990

Chater 1
Chater 2
Chater 3
Chater 4
Chater 5
Chater 6
Chater 7
Chater 8
Chater 9
Chapter 10
Chater 11
Chapter 12
Chpater 13
Chapter 14
Chater 15
Chater 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chater 21
Chapter 22
Chapter 23
Chapter 24

Table of Contents

Introduction to computing
Introduwction to problemsolving

Introdwction to progranming languayes

Introdwction to the use of a computer systen

Introdwction to progranming
Arithmetic

Arrays and DO loops (1)
Arrays and DO loogs (2)
Output; anintroduction
Output; anextension
Readng in daa

Making dedsions(1)
Fundions

Making dedsions(2)

Ermor deledion and correction
Conplex, double predsion and logicd
Chaacters

Subrautines

Files

Conmon and data stetements
Optimisaion

Probkem soling revisited
Opeding systens

Tools in progranmming

Annatated bibliography

Appendx A
Appendx B

ASCII Charader Se

Sanple text extracts

16
31
36
46
58
71
77
87
97
107
116
126
133
137
147
159
170
175
181
188
195
199
203
207
208

Table of Contents

Appendx C Codeexample
Appendx D NAG
Appendx E Fundionsavailalde in Fortran

Index

209
210
211
215

1

Introduction to conputing

‘Don’'t Panic’

Doudas Adams, The Hitch-Hiker’'s Guideto the Gaaxy’
Aims

Theaims of this chepter are to introduee the following:—
» the comporents of a computer — the hardware;

* the component pats of a complete computer systen — the other
devicesthat you need to do useful work with a computer;

* the sofware needad to make the hardware do what you want.

A computer

Intr odudion to computing Chapter 1

A computer is an electronic device, and can be thought of as a tod, like the
lever or the wheel, which can be made to do useful work. At the fundamental
level it works with bits (binary digits or sequences of zeros and ores).Bits are
often put togehe in lamge configuratons, eg. 8, 16, 32, 60, or 64. Hence
computers are often referred to as 8-hit, 16-bit, or 32-bit, 60-bit or 64-bit ma-

chines.

Most computers consist of the following—

CPU

MEMORY

This is the brains of the computer. CPU stands for central
processor unit. All of the work tha the computer doesis or-
ganised here.

The computer will also have a memory. Memary on a com-
puter is a sold st device tha comprises an ordeed
collection of bits/bytes/wads tha can be read or written by
the CPU. A byte is genegdly 8 bits (as in 8-bit byte), and a
word is most commonly accepted as the minimum number of
bits tha can be referercad by the CPU. This referendng is
called addressing. The memory typicdly contains prograns
and daa The following diagram illustrates the two ideas of

Address Memory
Contents
Hello
this
is
100

addressand contents of thememory at tha address.

Word sizes of 8, 16 and 32 bits are commonly foundin mi-
cro-oomputers; 16 and 32 bits ae common for
mini-computers; 32, 60 and 64 bits are common for main-

Chapter 1

BUS

Data

lines

Intr odudiion to computing 3

frames. A computer menory is often caled random access
menory, or RAM. This simply meanstha the accesstime for
any pat of memory is the sane in order to examine location
(say) 97, it is not necessay to first look throughlocations 1
to 96. It is possilbe to go directly to location 97. A slightly
beter term might have been access at random The menory
itsef is highly ordeed.

A bus is a sé of connections baween the CPU and other
componats. The bus will be used for a variety of purposes.
These include address signds which tell the memory which
words are wanted next; data lineswhich are usal to transfe
daa to and from menory, and to and from other pats of the
computer systen. This is typica of many systens, but sys
tems do vary considerably; while the information above may

CPU Otherl/O

devices

Address

lines

Memoy

notbetruein speific cases, it provides a genera model.

A diagramfor the constituent parts of atypica computeris given bdow.

The components of a computer system

Sofar the computer we hawve descibed is nat sufficiently versatle. We have to
add on other pieass of electronics to make it really usetil.

Disks

4 Intr odudion to computing Chapter 1

These are devices for sioring collections of bits, which are
inevitally organised in reality into bytes and files.Oneadvan
tage of adding theseto our compute system is that we can go
away, switch the machine off, and come back at a later time
and continue with wha we were doing.

Memary is expensive ard fast whereas disks are slower but
cheaper. Most computer sysens bdarce spesd against cost,
and have a small memary in relation to disk capadty.

Most people would be familiar with the two main type of
disks on micro compuers, and these are floppy disks, ard
had disks. Micro floppy disks come in two man physical
sizes, 5 1/4 and 3 1/2 inch. Hard disks are insice the sysem
and mostpeople do not see this type of disk.

Tapes These are slowe than disksbut cheger, gengdly. They vary
from ordinay, domesic cassttes usal with micros to very
large drivesfound on most mainframe systens. Thesedevices
are used for storing large quantities of data.

Others There are a large numbe of othe input and output devices.
These vary consdeably from system to systen deperding on
the work bang caried out. Most large computer systems have
lineprinters ard lase printers whilst other instdlations may
have more sophisicated i/o devices, e.g. plotters for the pro-
dudion of graphical output and photo-typeseters for the
produdion of high qudity printed maerial.

The most important i/o device is the termina. This book has been written as-
suming tha most of your work will be doneat a temind. Terminals tend to
come in two main types — either a so cdled dumb terminal or a micro-com
puter with suitable termind emulation (DEC VT100 is very comman). In either
caseyou communicae through the keyboad. This looks rather like an ordinary
typewriter keyboad, dthowgh some of the keys are different. However, the
locaion of the letters, numbers and common symbds is fairly stardard. Don't
panic if you have never met a keyboard before. You dorit have to know much
more than where the keys are. Few progranmers, even professonds, advance
beyond the stage of usirg two index finge's ard a thumb for ther typing. You
will find that speed of typing is rarely important, it's accuracy tha courts.

One thing tha people unfamiliar with keyboads often fail to redise is that
wha you have typedin is nat sent to the computer untl you pressthe carriage
return key. To achieve any sort of communicaion you must press tha key; it
will be somewhere on the right hand side of the keyboad, ard will be marked
return, cfr, send, erter, or sonething similar.

Chapter 1 Intr odudiion to computing 5

Software

So far we hawe nat mertional software. Software is the name given to the
programs tha run on the hardware. Pragrams are written in languages. Com-
puter languages are frecquently divided into two categaries; high-level and
low-lewe. A low leve language (e.g. assembler) is closerto the hardware, while
a high level language (eg. Fortran) is close to the prablem staement. There is
typicaly a oneto onecorrespondance beween an assambly larguaye statement
andtheadud hadware instiucion. With a high level larguggethere is a oneto
mary correspordence; one high level statemert will geneaate many madine
leve instiudions.

A cetain amount of gened purposesoftware will have been provided by the
marufacturer. This software will typically include the basic opeating sysem
oneor more compiers, an asembler, an edtor, and aloade or link editor.

* A compler transhktes high level staements into machine instuc
tions;

* An asEmblr trarslates low level or assenbly language state-
mentsinto machine instrudions;

* An editor ma&kes charges to arother program

* A loacer or link editor takes the output from the compiler and
completes the process of geneaing sonething tha can be exe-
cuted on the hadware.

These programs will vary consideably in size and complexty. Cetan pro-
grams tha méake up the operating systen will be quite simple ard small (like
copying utilities),while certain others will berdatvely lage and complex (like
a compiler).

In this book we conentrate on software or programs tha you write for you
course reseach, or work. As the book progreses you will be introduced to
ways of building on what othe pele have written, ard how to take advartage
of the vastamourt of software aready written, tested and documented.

Operating systens

Theae are genedly a variety of opeating systens available for a paticular
computer. The choice of opeating systen will deperd on the kind of work that
the compute system has to do. A time- shaing opeating system is oneof the
best for gereral purpose problem solving. These systems alow ters or even
hurdreds of users to usethe systen simultaneously. Rapid feedbad is passible,
and you canmodd complex systems, interact with the modd, and even change
the model, somdimes in a mater of minutes. It is also possilke to sa up a
problem quickly and have it run as a background process, whilst you work on
anothe aspet of the prodem.

6 Intr odudion to computing Chapter 1

Problems

1. Distingush beween a memory addressard memory contents.

2. What does RAM stard for?

3. Whatwould a WOM (write only memory) do?How would you useit?
4. Whatdoes CPU stard for? What does it do?

2

Introduction to Prdolem Solving

They construded laddes to reach to the top of the enanys wall, and they did
this by calculating the haght of the wall from the numbe of layers of bricks at
a point which was fadng in thdr direction and had not been plastered. The
layers were counted by a lot of people at the sametime, and thoudh somewere
likely to ge the figure wrong the majority would get it right.. Thus, guessimg
what the thickness of a single brick was, they calculated how long ther ladde
woud haveto be.

Thugydides, ThePdoporeresan Wa

‘When | usea word,” Humpty Dumpy said, in a rather soornfu tone ‘it means
just what! chooseit to mean - ndthe morenor less

‘The question is, said Alice, ‘whethe you can male words mean so many
different things!

Lewis Carrol, Through the Looking Glassand Wha Alicefoundthere.
Aims

Theamsare—

* to examine sone of the ideas ard concepts involved in prablem
solving;

» tointrodwethe concept of anagorithm;

* to introdue two ways of appraacing algorithmic problem solw
ing;

* to introduce the idess involved with systens andysis and desgn,

i.e to show the neal for pendl ard paper study before using a
computer system.

8 Introduction to problem solving Chapter 2

Intr odudion
It isinformatve to conside sone of thedictionary ddinitions of prodem
» amatter difficult of sdtlement or solution, Chambes
e aquesstion or puzle propourded for solution, Chambe's
* asouce of pemplexity, Chambes
» doutful or difficult question, Oxford
* proposiion in which something has to be done Oxford
* aquesstion raised for enquiry, consteration, or soluion, Websta's
e anintricae unsettled question, Webste’'s

and a common thread seems to be a queston tha we would like arswered or
solved Sooneof thefirst thingsto consider in prablem solving is how to pose
the problem This is often not as easy asis seens. Two of the mast common
methods are

e in nawurd language
« in artificial languayeor stylised larguaye
Both methods have their advantagesand disadvartages.

Natural Language

Most peqole use naura larguage and are familiar with it, and the two most
common forms are the written ard spden word. Consicer the following lan
guayeusae
» the difference beween a three year old child and an adult desaib-
ing the world;

» the differerce baween theway an engineer ard a physicist would
approach the design of a car engne;

* the difference baween a marager and worker consdering the im-
plicationsof theintroduction of new technology;

Great care must be taken when using naura language to ddine a problem ard
a solution. It is possibé tha people use the same language to mean completely
different things, and one must be aware of this when using naurd lamguage
whilst problemsoling.

Natural language can also be ambiguots

Old men and women ea chesse.
Are both themen and women old?

Chapter 2 Introduction to problem solving 9

Artificial Language

The two most common forms of attificial languaye are technical terminology
and naations. Technical terminology genedly includes both the use of new
words and alternate useof existing words. Consicer sorre of the congepts that
are usdul when examining the expansion of gase in both a theordical ard
prectical fashion

» tempeaure

* pressure

e mass

* isothemd expansin

» adiabdic expansion
Now look at the following

* achéd using apressure cooker

* agarage mecharic working on acarengne

» adodor monitoring blood pressure

* anerginea designing a gas turbine
Ead has a paticular prodem to solve, and each will approach their problemin
their own way; thus they will each usethe same terminology in slightly differ
ent ways.
Notations

Sormre examplesof nataionsare

» dgebra
e calculus
* logic

All of the above have been usedas notaions for desciibing bath problems ard
their solutions.

Resume

We therefore have two ways of describing problems and they both have alean-
ing phase untl we achiewve sufficient understanding to use them effectively.
Having arrived at a satsfactory problem statemert we next hawve to consder
how we géd the solution. It is here tha the powe of the algorithmic approach
becomesusdul.

10 Introduction to problem solving Chapter 2

Algorithms

An algoiithm is a sequence of stepstha will solve pat or al of a problem. One
of the mosteasily uncerstood examplesof an adgorithm is a recipe. Most people
have donesone cooking, if only making toast ard boiling an eq.

A recipeis madeup of two pats
» achek listof things you need
* thesguence or orde of sieps

Prodems can occur a both stages, e.g. finding out hdfway throughthe recipe
that you do not have an ingradient or utersil; finding out tha ore stage will
take an hourwhen therestwill be ready in tenminutes. Notetha certain things
can be donein any orde — it may not make any difference if you prepare the
potatoes before the carrots.

Thee are two ways of appraadiing prablem solving when using a compuier.
They both involve algorithms but are very different from oneanother. They are
called top-down and battom-up

Top Down

In atop downapproach the problemis first spesified ata high or gereral leve:

prepaeamed. It isthenrefined untl each step in the solution is explicit and in
the corred sequence, e.g. peel ard slice the onions,then brown in a frying pan
before addng the besf. Onedrawback to this approachiis tha it is very diffi cult
to teach to beginnes becausethey rarely have any ideaof what primitive tods
they have at thdr dispcea. Another drawbad is tha they often gea the se

guendng wrong, e.qg. now placein a modeately hot oven is frustrating because
you may have nat lit the oven (seqiendng proddem) and secondly because you
may have no idea how hot mockraiely ha redly is. However as more and more
problems are tackled top-down becomes one of the most effedive methods for

programming.

Bottom up

Bottom-up is thereverseto top-dowr As before you stat by defining the prob
lem at a high levd, e.g. prepare a meal. However, now there is an examination
of wha tools ett you hawe availalde to solve the problem. This method lends
itsef to teaching since a repertoire of tods can be built up and more compli-
cated problems can be tackled. Thinking back to the recipe there is nat much
point trying to cook a six caursemeal if the only thing that you can do is boil
an egg and open a tin of beans. The bottom-up approach thus has advantages
for the beginne. However there may be a problem when no suitable tod is
present. One of the authors’ friend’s leaned how to make Becdhame saiwce ard
was so pleased by his suxess tha ewvery other med had a course with a

Chapter 2 Introduction to problem solving 11

bechand sauce. Try it on your eggs onemorning. Here was a case of speify -
ing a prodem prepare a maal, and using an ingppropriate but plausible tool
BechamelSaue.

The effort involved in tackling a redlistic problem, introdudng the constuds as
and when they are needed and solving it is consideable. This approach may not
lead to areasondly comprehensive coverage of the languaye or be paticuarly
usdul from a teaching point of view. Case studes do have grea vaue, but it
hdps if you know the elementary rules before you start on them. Imagine lean-
ing Frerch by studying Balzac, before you even look at a French grammar. You
can learn this way but even when you have finishal, you may not be able to
spek to a Frenchman and be undestaod. A goad example of the case study
appraadch is given in the book Software Tools, by Kernighan and Plawer.

In this bodk our aim is to gradually introduce more and mare tools untl you
know enowgh to apprcach the problem using the top-dovn method, ard also
realise from time to time that it will be necessay to develop sorre new tools.

Stepwise Refinement

Both the abowe techniques can be combined with wha is called stegp-wise re-
finement. The origina idess behind this techniqueare wel expressedin a pgpe
by Wirth entitled Program Devdopment by Sepwise Rdinement, published in
1971. This meanstha you start with a globd prodem staement and break the
prablem down in stages, into smaller and smaller subprablems, tha becwmme
more ard more amenéble to solution. When you first stat progranming the
problems you can solve are quite simple, but as your expetience grows you will
find that you can handle more complex problerns.

When you think of the way tha you solve problems you will probably realise
that, unless the problem is so simple tha you can answe it straght away somne
thinking and pendl and pgper work is required. An example tha sorre may be
familiar with is in practica work in a scientific discipling where coming unpre-
paed to the situaion can be very frustiating and unrewarding. It is therefore
appropriate to look at ways of doing amalysis and design before using a conmt
puter.

Systens Analysisand Desgn

When one stats progranming it is generdly not apparert that one needs a
methodblogy to follow to bemme sucessfu asa progranmer. This is generdly
because the problens are reasondly simple, ard it is not neessary to make
explicit al of the stayes one hasgonethrough in arriving at a solution. As the
problems become more complex it is necessay to became more rigorous ard
thorough in ones appraad, to keg control in the fae of the inaeasng com
plexity and to avoid making mist&kes. It is then tha the bendit of sysens

12 Introduction to problem solving Chapter 2

andysis and design becomes obvious. Broadly we have the following stages in
systens andysis and desgn

* Proldem definition

* Feashility study ard fact finding

* Andysis

e Initid systen despn

» Deailed design

* Implementaton

* Bvduation

* Maintenance
and each problemwe address will entail slightly diff erert time spent in each of
thesestages. Letuslook at each stage in more ddtail.
Problem Definition

Here we are interestal in deining wha the problem really is. We shoutl aim at
providing some restriction on both the sampeof the probdem, and the objedives
we sd oursdves. We can usethe methods mentioned earlier to hdp out It is
essential tha the objectives are

* clearly defined;

* when more than one peasonis invdved, undestood by all people
conaxrned, and agreed by al pemle concerned;

e redistic.

Feasibility Study and Fad Finding

Here we look to see if there is a feasible solution. We would try ard estmate
the cost of solving the problem and see if the investment was warranted by the
bendits, i.e. costbendit andysis.

Analysis

Here we look at wha must be doneto solve the prodem. Note we are inter-
ested in finding wha we nead to do, but we do not actually do it at this stege
Design

Once the andysis is complete we know wha mustbe done ard we can proceed
to the desgn. We may find there are severa dtemaives, and we thus examine
atemae ways in which the problem can be solved. It is here tha we usethe

Chapter 2 Introduction to problem solving 13

techniques of top-donvn and botomrup problem soling, combined with sep
wise refinement to generate an agorithm to solve the prodem. We are now
moving from the logical to the physical side of the solution. This stage ends
with a chace between one of severa dterndives. Note that there is generdly
not oneideal solution, but seweral, each with thar own advantages ard disad
vantages.

Detailed Desgn

Here we move from the gened to the speific, The end result of this stage
shoutl be a sufficiently tightly defined speifi caon to generate actual program
codefrom.

It is a this stage tha it is usdul to gererate psaido-code This means writing
out in deail the actions we want carried out a each stage of our overdl ago-
rithm. We gradudly expand each stage (stepwise refinement) urtil it becomes
Fortran — or whatewer languaye we want in fact.

Implementation

It is a this stgge that we adudly usea computer systen to crede the pro-
gram(s) that will solve the problem. It is here tha we actually neel to know
sufficient about a progamming languageto use it effectively to solve our prob
lems. This is only one stage in the overall process,and mistakes at any of the
stayes can create severe difficulties.

Evaluation and testing

Here we try to see if the program(s) we have produced actudly do wha they
are supmsedto. We need to have daa sets tha enable us to say with confi-
dence tha the programredly does work. This may nat be aneasytask, as quite
often we only have numeric methadsto solve the problem, which is why we are
using the computer to solve the problem — herce we are relying on the com-
puter to provide the prod; i.e we have to use a computer to ddermine the
veracity of the prograns — and as Heller says Catch 22

Maintenance

It is rare that a progam is run once and thrown away. This means tha there
will be an on going task of mantaning the program, genedly to make it work
with different versions of the opeating systen, compiler, and to incorpaate
new fedures nat included in the origind design. It often seems odd when one
stats programming that a progam will need mainterarce as we are reludant to
regad a progam in the sane way as a mechanicd object like a car that will
eventually fall apat through use Thusmaintenance means keegng the program
working at sorre tolerale levd, with often a high levd of investmert in man

14 Introduction to problem solving Chapter 2

powe and resources. Research in this area has shown tha anything up to 80%
of the manpawer investment in a program can be in mantenance.

Condusions

A drawbad, inheent in al approachesto progranmming, and to problem solw
ing in generd, is the assurption that a solution is indead possibé. Thee are
prablems which are simply insolble — nat only problems like bdarcing a na
tiond budged, weaher forecastng for a year, or predicting which radoactive
atom will decay, but dso problems which are appaently computationdly solw
able. Knuth gives the example of a chess problem — deermining whethe' the
game is a forced victory for white. Although there is an algorithm to achieve
this, it requires an inordinately large amourt of time to complete. For prectical
pumposss it is unsohale. Other problems can be shownmathemaically to be
withou solution. As far as passible we will restiict ourselves to solvalde prob
lems, like learning a progamming language

Within the formal world of Conputer Sdence our description of an algorithm
would be constered alittle lax. For our introdudory needsit is sufficient, but a
more rigoraus agproach is given by Hopaoft and Ullman in Introduction to
Automata Theay, Langwages and Compuagtion, and by Beckman in Mathe-
maical Foundaions of Programmirg.

Problems
1. Whatis anagorithm?

2. Wha distinguishes top-down from botom-up approaches to prodem solw
ing? lllustrate your arswer with reference to the prodem of a car, motorcycle
or bicycle having aflat tire.

Bibliography
Aho A. V., Hopaoft J. E., Ullman J. D., The Design and Analysis of Computer
Algorithms AddisonWesky, 1982.
Theordical coverage of the design and andysis of computer
algorithms.
Beckman F. S, Mathemdicad Foundaions of Programmirg, Addison Wesley,
1981
Goodclea coverage of the theordical basis of computing.
Dahl O. J,, DijkstraE. W., Hoae C. A. R., Strudured Programmig, Academic
Press 1972.
This is the semind book on structured progranming.
Davis M., Compugbility and Unsolability, Dover, 1982.

Chapter 2 Introduction to problem solving 15

The book is an introdwction to the theory of computalility
and non-computability — the theory of reaursive fundionsin
mathemaics. Not for the mahematicaly faint hearted!

Davis W. S, SysemsAnalysis and Desgn, Addison Wesley, 1983.
Goodintrodudion to systens andysis and design, with a va

riety of casestudies. Also looks at sone of the tools availade
to the systems andyst.

Fogdin R. J., Wittgensten, Rouiedgeand Kegan Paud, 1980
The bod provides a gertle introdudion to the work of the

philosophe Wittgensten, who examined somne of the philo-
sophtal prodems asociated with logic and reason.

Hopaoft J. E., Ullman J. D., Introduction to Automata Theory, Languagesand
Computation, Addison Wesley, 197.
Conprehersive coverage of the theoretical bass of comput
ing.
Kernighan B. W., Plauge P.J,, Sotware Toolk, Addison Wesley, 1976.
Interesting essay on the program development process, origi-

ndly using a nonstandad variant of Fortran. Also availale
usirng Pasal.

Knuth D. E., The Art of Compugr Programmig, Addison Wesley,
Vol 1. Funcamenta Algorithms 1974
Vol 2. Semi-numeical Algorithms 1978
Vol 3. Sating and Sarching, 1972

Cortains interesting insights into mary aspeds of algorithm
design Good souce of spedalist agorithms, ard Knuth
writes with obviousard infedious enthusiasm (ard erudition).

Millingon D., Systams Analysis and Desgn for Compuer Applications Ellis
Horwood, 1981

Shot and readable introdudion to systens andysis and de-

sign
Wirth N., Program Development by Sepwise Refinement, Conmunications of
the ACM, April 1971, Volume 14, Numbe 4, pp. 221227.

Clea and simple expositon of the idess of stepwise refine
mert.

3

Introduction to Programming Lan-
guages

Wehawe to go to anahe language in order to think clearly abou the problem.

Samual Delaney, Babd—17

‘Where shal | bagin, pleaseyour Majesty?’ he asled
‘Begin at the begnning,” the King said grawely, ‘and go ontill you cometo the
end: then stop!

Lewis Carroll, Alice's Adventures in Worderland
Aims

The primay am of this chegpter is to provide a shot history of progran lan
guage devdopment. It concentrates on some but nat al of the major milestones
of the last 40 years, in roughchronological orde. The seconday aim is to show
the brealth of larguayes available. The chapter condudes with coverage of a
smdl number of more spesialisedlanguayes.

Chapter 3 Intr odudion to programming languages 17

Intr odudion

It is important to redise tha progamming languaes are a recent invertion.
They have been developed ove a relatively shot peiod — 40 years, ard are
stil undergoing improvemert. Time spert ganing sone historica pespetive
will hdp you undestand and evauate future charges. This chapter stats right
a the beaginning and takes you through sorre, but not all, of the developments
during this 40 year span. The bulk of the chapter resticts itsef to languayes
that are ressondly widdy available commercially, and therefore onestha you
are likely to meet. The chgpte condudes with a coverage of some more spe
cialisedandor reent developnments.

Some Early Theoretical Work

Sone of the most important early theaeticd work in computng was tha of
Turing and von Neumann. Turing’s work provided the basefrom which it could
be showntha it was possilbe to g& a machine to solve prodems. The work of
von Neumann added the concept of storage and combined with Turing’s work
to provide the basis of mostcomputers designed to this day.

What is a programming language ?

For a large nunbe of pemle a progranmming language provides the mears of
getting a digital computer to solve a prodem. There are a wide rarge of prob
lems, and an equdly wide rarge of progranming languages, with paticular
programming languages being suited to a paticular class of prablems. Thus
there are a wide variety of programming languages, which often appeas bewil -
dering to the beginner.

Program LanguageDevelopment and Engineeing

There is much in common beween the development of progamming languayes
and the development of anything from the engineering world. Consicer the ca:
old cars offer much of the sane fundiondity as modern ones, but most people
prefer driving newver ones. The sane is true of progranming languages, where
you can achieve much with the olde languages, but the newer ones are easier
to use.

The Early Days

A corncept that proves very usdul when discussng progranming languayes is
that of the level of a machine. By this is meant how closea larmguageis to the
uncelying madine tha the program runson. In the early days of progranming
(up to 1954) there were only two broad categories, machine languayes and as-
senblers. The lamguage that a digital madcine uses is that of 0 and 1, i.e they
are binary devices. Writing a progam in terms of patems of 0 ard 1 wasnot
paticulafy satsfactory ard the capability of usirg more meaningful mnenon-

18 Intr odudion to programming languages Chapter 3

ics was som introduced. Thusit wasredisedquite quickly that oneof the maost
important aspeds of progranming languayes is tha they have to be real ard
uncerstood by both machines and humans.

Fortran

The next stage was the dewvelopment of highe leve languayes. The first of
thesewas Fortran and it was developed over a three yea peiod from 1954to
1957 by an IBM teamlead by JohnBadus. This group achieved consiceralde
suaess,ard helped to prove tha theway forward lay with high level languayes
for computer basedproblem solving. Fortran standsfor formula translation ard
was usal manly by people with a sciertific background for solving problerns
that had a signficart arithmetic content. It was thus relatively easy, for the
time, to express this kind of prablem in Fortran.

By 1966 and the first siardard Fortran waswiddy availale, easyto teach, had
demonstatd the bendits of subraitines and indeperdent compilation, was
relatively machine indgendert and often had very efficient implemertations.
Possiby the single most impartant fact abou Fortran was and still is its wide-
spread usag in the scientific community.

Cobol

The busiressworld aso realised tha computes were useful and seeral lan
gugges were deveopeal including FLOWMATIC, AIMACO, Commercial
Translaor and FACT, leadng eventudly to Cobd - Common Bushess Orien
tated Larguage There is a neal in commerciad programming to desaibe daain
a much more complex fashion then for sciertific programming, and thus Cobol
had far grester capability in this area than Fortran The larnguage was unique at
the time in that a groy of compditors worked togethe with the objective of
developing a larguaye tha would be usdul on machines usedby otha manu-
facturers.

The contributions made by Colol indude
o firstly thesemraion beween
+ thetaskto beundetaken
» the desaiption of the data invaved

» the working ervironment in which the task is
carried out
* seondly a dda desciiption mechanism tha was largdy madine
independent

» thirdly its effectiveressfor handing large files

Chapter 3 Intr odudion to programming languages 19

» fourthly the bendit to be ganed from a progamming larguage
that was easy to read

Moden developmerts in computing, of report geneators, file handling soft
ware, fourth geneation developmert tools, ard espeially the increasing
availahlity of commercial relationd database management systens are gradu-
aly replacing the use of Cobol, except where high efficiency and or tight
control are required.

Algol

Another important developrent of the 195)'s was Algol. It had a history of
devdopmert from Algol 58, the original Algol languaye throuch Algol 60
eventually to the Revised Algol 60 Report. Sane of the design criteria for Al-
gol 58 were

» thelanguage shoud be as closeas possilbe to standad mathemati-
cal notation and shoul bereadable with little further explandion

e it should be possble to useit for the description of computing
processs in publcations

* the new languaye shoud be mechanicdly transhtble into ma
chine progranms

A sad feature of Algol 58 was the lack of any inputoutput facilities, and this
meant tha differert implementatons often had incompaible features in this
area.

The next important ste for Algol occurred at a UNESQO spamsorel conference
in Jure 1959. There was an open discusson on Algol and the outcome of this
was Algol 60, and eventudly the RevisedAlgol 60 Repott.

It was at this conference tha JohnBackus gave his now famous pgoer on a
method for ddfining the syniax of a languaye called Badkus Norma Form, or
BNF. Thefull significance of the paper by Backus was not immediately recmg-
nised. However BNF was to prove of erormous vaue in languaye definition,
and hdped provide aninterface point with computationd linguistics.

The contributions of Algol to programlanguage development indude
e bloc strudure
» scerulesfor variables becauseof block strudure

» the BNF ddinition by Backus — most languayes now have a for-
mal definition

* the supprt of recursion

» itsoffspring

20 Intr odudion to programming languages Chapter 3

and thus Algol wasto proveto make a contribution to programming languayes
that was never reflected in the use of Algol 60 itsdf, in tha it has been the
paent of oneof the main strands of progam larguage development.

Chomsky and Program Language Development

Progamming languayes are of consiceralde linguistic interest, and the work of
Chamsky in 1956 in this areawasto prove of inestimable value Chomsky’s
systen of transformetiond grammar was developed in order to give a precise
mathemaical description to certain aspets of language. Simplistically Chom-
sky desciibes grammars and these grammars in turn can be useal to ddine or
generate carresponding kinds of languages. It can be shown that for each type
of grammar and language there is a correspading type of macine It was
quickly redised tha there wasa link with the eadier work of Turing.

This link hdped provide a firm sdentific base for progranming language de-
velopmert, ard modern compiler writing has come a long way from the early
work of Backus and his team at IBM. It may seem importart when playing a
video game at home or in an arcade but for sone it is very comforting that
there is afirm theoretical basis behind al thatfun.

Lisp

There were dewveloprents in very spesialised areas aso. List processing was
proving to be of great interest in the 50’s and saw the development of IPLV
beween 1954 ard 1958. This in tum lea to the development of Lisp at theerd
of the 50's. It has proved to be of constderable usefor progranming in the
areas of artificial intelligence, playing chess auomatic theorem proving ard
gengd prodems solving. It was one of the first languages to be interpreted
rather than compiled. Whilst interpreted languages are invaiably slowe and
less €fficient in thdr use of the undelying computer system, than compiled
languages, they do provide great oppottunities for the use to explore ard try
outidess whilst s& at aterminal. The powe tha this givesto the computdional
prablem solver is consdeable.

Possiby the greatest contibuion to program larguaye developrment made by
Lisp was its fundional notaton.

Snobol

Snolol was developed to ad in string processimg which was seen asan impor-
tant pat of many computing taskse.g. parsing of a program. Probdly the maost
impartant thing tha Sndool demonstated wasthe powe of patern matching in
a programming language, e.g. it is passible to ddine a patern for a title that
would include Mr, Mrs, Miss, Rev, etc and search for this patem in a text
using Snobd. Like Lispit is gererally available as an interpreter rather than a
compiler, but compiled versions do exist, and are often called Spitbd. Patem

Chapter 3 Intr odudion to programming languages 21

maitching capabilitiesare now to befound in many editors and this méekes them
very poweaful and usefll tools. It is in the area of patem matching that
Snolol's greaestcontribution to program language development lies.

Second Generation Languages

PL/1 and Algol 68

It is probably true tha Fortran, Algol 60 and Colol are the three main first
geneation high level languages.The 60s sav theemergerce of PL/1 and Algol
68. PL/1 was a synhesis of features of Fortran, Algol 60 and Cobol It was
soonredlised that whilst PL/1 had grea richness and powe of expresson this
was in some ways offset by the greater diffi culties involved in language defini-
tion and use

These latter problems were true of Algol 68 also. The report introduced its own
syntadic and semantic convertions and thus forced upon the prospetive use
another stage in the leaning process. However it has a smell but very commit-
ted use population who like the very rich fadlitiesprovided by thelanguage

Simula

Anothe strand that makes up progran languaye developmert is provided by
Simula It is a gengd pumposeprogranming language developed by DaH, My-
hrhawg ard Nygaard of the Norwegan Computing Certre. The maost important
contibution tha Simula makes is the provision of language constuds tha aid
the programming of complex, highly interadive problems. It is thus heavly
usel in the areas of simulation and modelling.

Pascad

The designe of Pascal, Niklaus Wirth, had patticipaed in the ealy stages of
the design of Algol 68 but constdered tha the geneadity and complexity of
Algol 68 was a movein the wrong direction. Pascal like Algol 68 had its roats
in Algol 60 but aimed at providing expressve power through a small set of
straghtforward concepts. This set is relatively easy to learn and hdps in pro-
dudng readable and hence more comprehensble programs.

APL

APL is anathe interesting larnguage of the 60's. It wasdeveloped by Iversonin
the ealy 1960’s and was available by the mid to late 60s. It is an interpretive
vector and matix basel language with an extersive se of operators for the
maripulation of vedors, arrays etc of whaewer daa type As with Algol 68 it
has a smdl but dedicated user population. A possilly unfar comment about
APL progransis tha you do nat debugthem, but rewrite them!

22 Intr odudion to programming languages Chapter 3

Basic

Basic stands for Beginnes All Pupose Symbdic Instriction Code, and was
developed by Kemeny and Kurtz a Dartmouth during the 1960’s. Its name
gives a clue to its audence and it is very easy to learn. It is gererally inter-
preed thoudh compiled versionsdo exist. It is probably the most heavily usel
language on micros and home computers. It has proved to be wdl suited to the
repid development of small programs. It is much criticised because it lacks
featuresthat ercourage or force the adoption of sourd progamming techniques.

C

There is a requiremert in computing to be able to aaess directly or at least
effi ciently the undelying machine. It is therefore nat surgising tha computer
professionds have developeal high level languagesto do this. This may well
seen a contradiction, but it can be done to quite a suprising degree. Sone of
the earliest publishel work wastha of Martin Richards and the developmert of
BCPL

This language directly influenced the work of Ken Thompson and can be
clearly seenin the progranming languayes B and C. The UNIX operating sys
tem is amosttotdly writtenin C and denonstrates very clearly the bendits of
the useof highlevel languayes wherever possibé.

Sone Other Strands in Language Development

There are mary strands that make up progam language development ard somne
of them are introduced here.

Abstradion, Stepwise Refinement and Modules

Abstradion has proved to bevery important in progranming. It erales a com-
plex task to be broken down into smaller parts conentrating on what we want
to hgppen rathe than howwe want it to hgppen This leads almostautomdically
to theideasof stepwiserefinement and modues, with cdledions of modules to
peform speific tasksor steps.

Structur ed Programming

Strudured progamming in its narrowest senseconcems itsef with the develop-
mert of programs usirg a smell but suffi cient setof statements and in paticular
control statemerts. It has had a great effed on progam language design ard
mostlanguages now sugportthe minimal set of control structures.

In a broade serse structured progranming sulsumes other objectives induding
simplicity, compretersibility, verifiability, modifiability and maintenance of
programs.

Chapter 3 Intr odudion to programming languages 23

Ada

Ada represernts the culminaion of many years of work in progam larguage
developmert. It was a collective effort and the main aim was to prodice a
language suitable for progranming large sale ard real time systens. Work
stated in 1974 with the formulaion of a series of doauments by the American
Depatment of Defence (DoD), which lead to the Steelman doawments. It is a
moden agorithmic language with the usual control structures,ard facilities for
the useof modues and allows sepaate compilation with type checking across
modules.

Adais a poweful and well engineered language Its widespred useis certain
as it hasthe backing of the DoD. However it is a large and complex larguage
and consequertly requires sone effort to leam. It seens unlikely to be widdly
usal except by a small number of computer professiorals.

Modula

Modua was desgned by Wirth duiing the 1970’s at ETH, for the progranming
of embedded red time systens. It has many of the fedures of Pasel, and can
be taken for Pasal at a glance. The key new features that Modua introduced
were thoseof processesand monitors.

As with Pasal it is relatively easy to learn and this makesit much more attrac-
tive than Ada for most people, achieving much of the capability, without the
complexity.

Modula 2

Wirth carried on developing his idea abou progamming languages ard the
culmination of this canbe seenin Modua 2, and in his words

...In 1977, a reseach project with the goal to design a compuer sysem (hard-
ware and sotware) in an integrated approad, was laurched at the Institut fur
Informaik of ETH Zurich. This system (later to be called Lilith) was to be
programme in a single high level language which theefore had to satisfy
requirements of high lewvel system designaswedl asthose of low level program-
ming of parts that closdy interad with the given hardware Modula 2 emeaged
from careful design ddiberations as a langage that indudes all aspets of
Pascd and extendsthem with the impartant module concept and thoseof muli-
programmig. Snce its syntax wasmorein line with Modula than Pascd's the
chosen namewasModula 2. ...

Thelanguage’s main addtions with regard to Pascal are:

1. the modue conaept, and in particular the fadlity to split a module into a
ddfinition part and an implementation part.

24 Intr odudion to programming languages Chapter 3

2. A more systematic syrtax which fadlitates the learning process. In particu-
lar, ewvery strudure starting with a keyword also ends with a keyword, i.e is
propely bradketed.

3. Theconcept of processasthe key to multi-programmng facilities.

4. Socalled low level fadlities which male it possibé to breach the rigid type
consisercy rules and allow to map data with Modula 2 strudure onto a store
without inheent strudure.

5. The procedure type which allows procedures to be dynamially assigred to
variables.

Other LanguageDevelopments

The following is a smal sekction of languaye developments tha the author
findsinteresting — they may well nat beincluded in othe peoples coverage.

Logo

Logois a larguaye tha was developed by Pgeat and colleagues at the Artifi-
cial Intelligence Laboraory at MIT. Pget is a professor of bath mathematics
and education, and has been much influenced by the psydiologist Piage. The
languageis usel to crede learning environmerts in which children can commu-
nicae with a computer. The languaeis primarily used to demonstate and hdp
children develop fundamentd concepts of mathemaics. Prdoably the turtle ard
turtle geomery are known by educationalists outside of the context of Logo.
Turtles have beenincorporated into the Smdltalk computer sysemdeveloped at
Xerox Pdo Alto Research Centre — Xerox PARC.

Postsciipt, TeX

The 80's have seena rafd spreal in theuseof computers for the produdion of
printed material. The abowve languages are each usal in this area quite exten
sivdy.

Postsdpt is alow leve interpreiive progamming language with good graghics
capablities. Its primary purposeis to enable the easy produdion of pages con
taining text, grgphical shages and images. It is rarely seen by mostend uses of
moden desktop publishing systens, but undelies mary of thesesystans. It is
suppeted by an inaeasihg nunbe of laser printers and type-sdters.

TeX is a language designed for the produdion of mahemaical texts, ard was
developed by Dondd Knuth. It lineaisesthe produdion of mathematics usinga
standad computer keyboad. It is widely usal in the sdentific community for
the produdion of doaumentsinvolving mathemaica equaions.

Chapter 3 Intr odudion to programming languages 25

Prolog

Prolog wasoriginaly developed at Marselle by a group lead by Colmerawer in
1972/73. It has sinee been extended and developal by a variety of people in-
cluding Peaera (L.M.), Paeira (F), Warren and Kowaski. Prdog is unusud in
thatit is a vehicle for logic progamming. Most of the languayes desaibed here
are bascdly agorithmic larguages ard require a spedfication of howyou want
sonething done Logic progamming concentrates on the what rather than the
how The larguage appears strange at first, but has been taught by Kowalski
and others to 10 year old children a schools in London

Smadltalk

Smalltak has been unde dewvelopment by the Xerox PARC Leaming Research
Groy since the 1970's. In thar words Smdltalk is a graphical, interactive
programming environment. As suggested by the personda computer vision,
Smaltalk is designed so that every compaent in the sysemis accessible to the
use and can be presented in a meaningful way for obsevation and manipula-
tion. Theuse interface issues in Smdltalk revolve around the attemptto create
a visud langwagefor each object. Thepreferred hardwae system for Smalltalk
includes a high resoltion graphical disply screen and a pointing device sud
asa graphics pen or mause.With thesedevicesthe usercan sdect informaion
viewed on the saeen and invdke messages in order to interad with the infor-
maion. Thus Snelltak represents a very different strard in progran larguage
devdlopmenrt. The ease of useof a system like this has long been appredated
and was first damonstated commercially by the Macintoshmicro-computers.

Wirth has spet some time a Xerox PARC ard has been influenced by thar
work, and in his own words the mostelating sersation was that after sixteen
yeas of working for computers the compuéer now seemel to work for me This
influerce can be se=nin the design of the Lilith macdine the Modula2 ergine.

SQL

SQL stards for Structured Quety Language, and was originally developed by a
variety of people mainly working for IBM in the SanJoseResearch Laloraory.
It is a relatond database language and emales progranmers to define, ma
nipulate ard contol daa in a relationd daabase Simplistically a relational
databaseis se@ by a use asa collection of tables, comprising rows and col-
umns. It has beame the mostimportant language in the whole database field.

ICON

Icon is in the sane fanily as Snolwl, ard is a highdevel genea purpcse pro-
granming languaye tha has most of the features necssary for efficient
processingof non-numeric daa. Griswold (one of the origind design team for

26 Intr odudion to programming languages Chapter 3

Snolol) has leamt much since the design and implementation of Snobd, ard
the languageis ajoy to use in mostareas of text manipulation.

Fortran 8x

Almost as soonas the Fortran 77 stardard was complete and published work
began on the next version. At the moment the 8x standad is only a drdt, but
shoutl be completed very soon. The language dravs on many of the ideas cov-
ered in this chepter and these help to make Fortran 8x a very promising
language for the future. Sorre of the new features include

use ddineddata types

array opeations

control of the precision of numerical computdion
enhanced control structures

recursian

dynamic staage alocation

A very readable coverage of the new stardard can be found in Fortran 8x
Explained by Metcafe ard Rdd. It is likely tha 8x conformant compilers will
become available in thenear future.

Fortran 77 Revisited

As shoud now be apparert Fortran is but oneof alargefamily of progranming
languages. It has already been standardised twice (in 1966 and 197), and is
nearing completion of the third standardisaion exercise to prodiuce Fortran 8x.
The X3J3 committee was too circumspest to have called it Fortran 88, after
missing Fortran 77 by a year, thoughthey look like missng this deadline now!
All of Fortran 77 is contained in 8%, so don’t worry about wasting you time
learning Fortran 77 — it will be around for along time to comd

Summary

It is hoped tha the reader now has some idea about the wide variety of uses
that progranming languages are put to. Do nat be put off by the range of
languages described here. All journeys have to start somewhere, and on the
journey of mastey of progranming Fortran is a good place to stat!

Chapter 3 Intr odudion to programming languages 27

Bibliography

Adobe Sysens Incorporated, Postscipt Language Tutorial and Coolbook, Ad-
dison Wesley.

Adobe Systens Incorporated, Postsceipt Language Reference Manud, Addison
Wesky.

The two bodks provide a comprehensive coverage of the fa-
cilities and capabilitiesof Posscript.

Annds of the History of Conputing, Soecial Issue Fortran’s 25 Amiversary,
ACM pulication.

Very interestng comments, some anecdotd, abou the early
work on Fortran.

Birtwistle G.M., Dahl O. J., Myhrhaug B., Nygaard K., SIMULA BEGIN,
Chatwell-Bratt Ltd.

A nunmbe of chapters in the bodk will be of interest to pro-
grammers unfamiliar with sone of the idea invaved in a
variety of aress including systems and modds, simulation,
and co-rouines. Also has some sound precticd advice on
prablem solving.

Brinch-Hansen P., The Programmng Language Conaurrent Pascal, IEEE
Transadions on Sdtware Enginesiing, Junel975, 199-207.

Looks at the extensions to Pas@l necessay to suppat corr
current proesses.

Date C. J, A Guideto the SQLStndard, AddisonWesley.

Date haswritten extensively on the whole database field, ard

this book looks at the SQL languae itsdlf. As with many of

Dates works quite easy to real. Appendix F provides a usdul

SQL bibliography.
Gdssman L. B., Separate Complation in Modula2 and the structure of the
Modula2 Compiler on the Personal Compuer Lilith, Dissetation 7286, ETH
Zurich

Jaoh C., CodeGeneaation andthelLilith Architecture, Dissetation 7195, ETH
Zurich

Fascinaing backgroundreadng conceming Modua2 and the

Lilith architedure
Goldbeg A., and RobsonD., Smditalk 80: The languageand its implementa
tion, AddisonWesky.

Written by some of the Xerox PARC pemle who have been
involved with the development of Smdltalk. Providesa goad

28 Intr odudion to programming languages Chapter 3

introdudion (if that is possibé with the written word) of the
capablities of Smaltalk.

Goosard Hartmars (Eds), The Programmig LanguageAda - Reference Man
ual, Springer Verag.

The definition of thelanguace.

Griswold R. E., Pogie J. F., Polansky I. P, The Snolml4 Programmig Lan
guage Prentice-Hall.

The origind book on the larguage Also provides sone short
historical material on thelanguage.

Griswold R. E., Griswold M. T., The Icon Programmirg Language Prentice-
Hall.

The definition of the language with a lot of good examples.
Also contains information on how to obtain pubic doman
versions of thelanguage for a variety of machinesand opeat-
ing systems.

Hoare C.A.R,, Hints on Programming Language Design SIGACT/SIGPLAN
Synposum on Principlesof Pragramming Languayes, Odobe 1973.

Thefirst sertence of the introdudion suns it up beauifully: |
woud like in this paper to present a philosophyof the design
and evaluation of programmng languages which | hawe
adted and devdopeal ove a numier of years, namdy that
the primary purposeof a programmng langlage is to hdp
the programmerin the pradice of his art.

Jerson K., Wirth N., Pasal: Use Manual and Regart, Springer Verlag.
The origind definition of the Pacd larguagge Under
standably dated when onelooksat more recent expositionson
progranming in Pasal.
Kemeny JG., Kurtz T.E., Basic Programmirg, Wiley.
The origind book on Bast by its desigrers.
Kernighan B. W., Ritchie D. M., TheC Programmirg Language Prentice Hall:
Englewood Cliff s, New Jesey.
The origind work on the C larguage, and thus essential for
sefous work with C.
Kowalski R., Logic Programmig in the Fifth Generation, The Knowledge En-
gineering Review, The BCS Speialist Group on Expat Systens.

A shot pge providing a goad badkgrourd to Prolog and
logic programming, with an extensive bibliography.

Chapter 3 Intr odudion to programming languages 29

Knuth D. E., The TeXxbook Addison Wesley.

Knuth writes with an tremendous enthusiasm and perhgps this
is uncerstandale as he did design TeX. Has to be real from
cove to cove for a full understanding of the capability of
TeX.

LyonsJ.,Chansky, FontanaCollins, 1982.

A god introdudion to thework of Chamsky, with the added
bendit that Chansky himsdf read and commented on it for
Lyons.Very reacalde.

Malpas J., Prolog: A Relational Language and its Applications Prentice-Hall.

A goodintroduction to Prdog for pegle with sone program-
ming background. Good bibliogrgphy. Looks at a variety of
versions of Prolog.

Marcus C., Prolog Proggamming Applications for Database Systems, Expert
Systansand Natural Languaye Sysems,Addison Wesley.

Cowerage of the use of Prdog in the abowve areas. As with the
previous book aimed mainly at progammers, and herce not
suitable asan introdudion to Prolog as only two chepters are
devoted to introdudng Prolog.

Metcaf M. and Rdd J., Fortran 8x Explained, Oxford Sdence Pubications,
OUP.

A clea compect coverage of the main features of Fortran 8x.
Rdd is secretary of the X3J3committee

Pageat S, Mindsbrms - Children, Compugers and Poweful ldeas Hawester
Press

Very peasoral vision of the uses of computers by children. It
chdlerges many conventiond ideas in this area.

Sammett J., Programmng Languages: History and Fundamatals, Prentice
Hall.

Possiby the most comprehensive introduction to the history
of program larguage dewvelopment — endsunfortunaely before
the 1980’s.

Sdhi Ravi, Programmirg Languages: Corcepts and Construds, Addison
Wesky.

Eminently realable ard thorowgh coverage of programming
languages. The annotted bibliogrgphic notes at the end of
each chegpter and the extensive bibliogrgphy méake it a very
usdul book.

30

Intr odudion to programming languages

Chapter 3

Chapter 3 Intr odudion to programming languages 31

Young S.J, An Introdudion to Ada, 2"9 Edition, Ellis Horwood.
A reaable introdudion to Ada. Greater claiity than the first
edition.
Wirth N., An Assaesmant of the Programmirg LanguagePasal, IEEE Transa-
tionson Sotware Engineging, Junel975 192-18.
Wirth N., History and Goak of Modula2, Byte, August 1984 145-1%.

Straight from the horse’s mouth!
Wirth N., On the Design of Programmng Languages, Prac. IFIP Congess 74,
386:393 North Holland, Amstedam.

Wirth N., The Programming Language Pascal, Acta Informatica 1, 3563,
1971.

Wirth N., Modul: a langwage for moddar mutki- programmng, Software
Praticeand Expeierce, 7, 3-35,1977.

Wirth N., Programmig in Modua2, Spiinger Verlag.

The origind definition of the language. Essential reading for
anyore consdeing progamming in Modua2 on a long term
basis.

4

Introduction to Usinga Computer
System

Plug in! Playbadk! Tapespond! The electronic newark longsto sd you free.

Edwin Morgan, ‘Sdook’s Out’
Aims

The aims of this chepter are to inroduce a smal set of conaepts to enable you
to work at a computer sysem eithor pesona workstation or timeshaling sys
tem. In paticular:—

* the overall envirorment tha progranming is caried outin
e opeding sysens

o files

* editors

* the compilation process

* linking and libraries

32 Introduction to the Useof a Computer Systen Chapter 4

Intr odudion

Progamming invaves the useof a computer system, and therefore to become
sucessful as a progranmer you are recuired to learn how to usea computer
systen effedively. In paticular you needto know about

e opeding sysens

o files

* editorsand editing

* the compilation process

* linking

Operating Systans

A simple ddinition of an operating systen is the suite of prograns that make
the hardware usalte. Most computer sysemns have an opeating system and they
vary consideably from thoseavailade on micros, eg. CPM on 8 bit systems,
PCDOSMSDOS/DOSon 8, 16 and 32 hit machines respetively, through
VAX/VMS on DEC mini computers, and VM/CMS on IBMs large gened pur-
posemanframes.

Fromthe progranmer viewpoint the opeating systen must provide ways of
» creatng, editing and ddeting fil es
» copyingfiles
» compiling, linking and runring prograns
* saung files

e gd printed versiors of files

Files

A file is a collection of informaton that you refer to by name, eg. if you were
to usea word processorto prepae a letter then the letter would exist as a file
on tha sysem genealy onadisk of sone sort In a daabasecontaning infor-
maton on stucernt examination resuks and coursework marks, this information
would exist as afile.

There will be many ways of manipulating fileson the computer systen that you
work on. The interface to the compute system is provided by an operating
systen, ard unfortunately most opeating systens offer similar fundionality,
viacommandstha somdimes have similar names, but different syntax, or com-
pletely different names. Sowhenwe look at ways of manipulating files we will
gengdly have to lean severa ways of doing the same thing, if we use more
than one computer systen. You will usean editor or word processor to make

Chapter 4 Introduction to the Useof a Computer Systen 33

changes to your program This file woud be the sour@ of your program, ard
you would then use a compiler to compile you program The compiler will
probably geneate a numbe of files as it compiles your program, sorre for its
own intenal use, othes tha may well be of inteest to you. There will be
commands to méake files pemanent, commands to copy files, commards to
store daa on magndic tape or floppy disks, etc. Sorre files can be real by
humen bengs e.g. text fileslike the souce of your progam, othe's canonly be
uncerstood by the machine, so called binary files tha are the actud hits pa-
terns tha the machine itsef undestands. Therefore it is not dways possibé to
examine al files on a computer systen, assomeare not interded to be immedi-
ately or diredly comprehensble by human bengs.

You will hawe to learn about
» wha files bdong to you;
* howto gé rid of files;
* togeton-ine hdp;
» géditing fil es printed;
» display afile onthescreen

and the following table looks a three opeating systems (MSDOS, VAX/VMS
and UNIX) and the terminology or commands they useto achieve thealove

Opeding systen —> MSDOS UNIX VAXIVMS
Wheat files are mine dir Is dir
Gatting rid of files dd/era rm dd/pur
On-line hdp man hdp
Printing files print pr pr

Display afile type ca type

Editors and Editing

All gengd pumposecomputer systens have at least one editor so that you can
create and modify tex files like your progam ard daa fil es. The easiest editor
for most people to use is a screen editor. All this meansis tha you can move a
cursoraround the saeen of your termina or work-stdion and make changesto
your file by typing in the new or modified text. The charges take place imme-

34 Introduction to the Useof a Computer Systen Chapter 4

diately as you typein the text. Sceen editors are the mostwidely usel type of
editor.

When you usea context editor you have to type in commands to charge the
text, e.g.

s/Frel/Bert/

would take thefirst occurrerce of Fred and substiute it with Bert. Theseedtors
are easyto usesince you only need a smal number of commandsto do mast of
wha you wart.

There are dso editors with patern matching capabilities. This means tha you
can ddfine a patern, and then search for any of the possible strings tha that
patern represents, e g.

[0..9][0..9]0..9]
is a possble patern for a three digit number, each component

[0.9]
meaning any digit beween 0 and 9. Therefore

s/[0..9][0..9][0..9)//

would remove the next three digit nunbe ocaurring within a ling or put an
other way sulstitute it with nothing.

On micro systens the edtor may well be cdled a word processor,ard there
will be a way of using the word processorin program mode rather than word
processingmode In word proassng mode you will probaly find that the text
will justify automaically left and right, whereas in program mode the text re-
mainsasyou have typed it in.

Editors tha are program language sersitive, and hdp in consstent layout, i.e
indentation, ard style, are now becoming more widdy available, and hdp the
beginne consdeably in learning how to use a progranming language effec-
tively.

The Compilation Proocess

It is here tha we fead our program prepared using an editor or word proessor
into a caompiler. If the term seems a little farfetched wait until you have useal a
compiler a number of times ard seen the sort of (apparernt) gibberish tha can
be genegated from a very smdl error. When we eventudly get a progam to
compile we then move onto the next staye using alinker.

Linking

A variety of namesare given by diff erert computer marufacturers to thelinker,
including linker, link loacer, linkage editor and loader. The underlying func

Chapter 4 Introduction to the Useof a Computer Systen 35

tiondity is the sane and they are usel in the middle pat of the compile, link
and run or exeaute cycle. They take the output from the compiler and tum it
into sorething tha can be executed or run on the computer.

Running a Program

It is at this stage that we actually see whether our program works. If we are
lucky it will execute as we interded ard we have solved our prablem. We
typically interact with it ard find tha it doesnt do wha we want, and we then

* locae theerror

» edit theprogram

» compile theprogam

* link the program

e runit, findit doesn't work.....

and as can be seen there is a loop tha we cycle through until we have a work-
ing progam.

We will look in more ddail at the compilation processin the chgpters on func-
tions,subrouines, common and daa.

Bibliography

The best strategy here is to obtan the manufacturers doaumentation for the
systen you use Each manufacture will have a paticular style and terminol
ogy, and whilst one manufadurer may use consistent and clea terminology (|
live in hope) you will inevitaly find tha different manufadurers usecontra-
dictory terminology.

Deitel H., Opeating Systang AddisonWesley, 1984

The book provides a comprehensive coverage of most aspeets
of operating systens. There are also a numbe of casestudies
of currert opeating sysens.

Lister A. M., Fundamenals of Opeating Systeang MacMil lan, 1984.

Brief and straightforward coverage of essetial aspets of op-
erating systems.

5

Introduction to Programming

‘Though this be madnes, yet thereis mehodin’t’

Sh&espare

Aims

The aims of the chapter are—

to introduce the ideatha there is a wide classof problems that
may be solved with a computer, and tha there is a relationshp
beween the kind of problem to be solved ard the choice of pro-
gramming languace tha is usal to solve tha probleny

to give some ofthereasons for the choice of Fortran 77

to introduce the fundamental components or kindsof statements to
befoundin agened purposeproganminglarguage

to introdwe the three concepts of name, type and value

Chapter 5 Intr odudion to Programming 37

Intr odudion

We have sea tha an agorithm is a seqience of steps that will solve a pat or
the whole of a problem. A program is the realisaion of an algotithm in a pro-
gramming language, and there are at first sight a surpisingly large nunbe of
programming languayes. The reason for this is tha there are a wide range of
problems tha are solved using a computer, e.g. the telephane compary generat-
ing a teephone directory or the meeaologicd certre prodwcing a weaher
foreast. These two problens make diff erert demands on a progranming lan
guaye ard it is unlikely tha the sane larguage would be used to solve both.

The range of problens tha you want to solve will therefore have a strong
influerce on the progamming language that you use FORTRAN stands for
FORmula TRANslaion, which gives a hint of the expected range of problems.
Fortran is patticuarly goad a numerical problems. It is desgned to do things
with numbers, and to caculate. It can manipulate character informaton (a fea-
ture absent in eadier versiors of the languaye). These two features make
Fortran a goad dl-round larguage Sone of the ressonsfor chooshg Fortran
ae—

* The larguage is suitable for a wide class of both numeric ard
non-numeric problems;

* Thelanguage is widely available in bath the eductiond and sci-
entifi c sectors;

* A lot of software drealy exists,written in either Fortran 77 or its,
preceaessor, Fortran 66. The numbers are based on theyear of the
definition of the standad, 19660r 1977.Fortran 66 is also known
as Fortran V.

Peaiodically, Fortran is re-defined by the American Standads Insttute, who
have a conmittee — the X3J3 committee — which consides charges to the
language This new ddfinition is then puldished as the ddinitive staement of
the form of the language Althowh these changes take place alout every ten
years, we are confident tha we will be using Fortran well into the next century.
Theaefore there will be bath shortterm and long-term bendits from leaming
Fortran 77.In thefollowing, Fortran is taken to mean Fortran 77.

Elements of a programming language

As with ordinay (so-called natural) languages, eg. English, French, Gadic
etc., progranming languages have rules of syrntax, grammar and spéling. The
application of therules of synex, granma and spelling in a programming lan
guaye are more strict. A progran has to be unanbiguous,since it is a precise
staement of the actions to be taken. Many everyday activities are rahe
vagudy defined — Buy somebread on your way home— but we are genegaly
sufficiently adaptable to cope with the variations which occur as a result. If, in

38 Intr odudion to Programming Chapter 5

a program to calculate wages, we had aninstriction Deduct somemoney for tax
and insuarce we could have an awkward problemwhen the progam calculated
completely differert wages for the same person for the sane amount of work
every time it was run. Oneof the implicationsof the strict syrtax of a program-
ming larguaye for the novice is tha apparertly silly error messages will appear
when first writing prograns. As with mary other new suljects you will have to
learn sone of thejargon to undestand these messayes.

Progamming languages are made up of staements. Thesestatemerts fall into
the following broal categories:—

» Data desaiption statements

These are necessay to descibe wha kinds of data are to be
processed In the wages progran for example, there is obvi-
ousl a difference between peopes names and the anount of
money they eam, i.e. thesetwo thingsare not the sane, and it
would not make any serse adding your name to your wages.
Thetechnicd term for this is data type; a wage would be of a
different daa type (a numbe) to a surname (a sequence of
characters).

» Control structures

A program can be regaded as a sequerce of staenments to
solve a paticular prodem, ard it is common to find tha this
seqience needs to be varied in prectice. Consde agan the
wages progam. It will need to sdect baween a variety of
circumstances (saymaried or single, paid weely or monthly
etc), and also to reped the program for evetybody employed.
So there is the neal in a progranming languae for state-
merts to vary andor reped a seqience of satements.

+ Data processng statements

It is necessay in a proganming languaye to be ale to proc
ess data. The kind of processingrequired will deperd on the
kind or type of data. In the wagesprogram, for exanple, you
will nead to distingush beween names and wages. Therefore
there must be different kinds of statemerts to manipulate the
different types of daa, i.e. wages and names

* Input and output (i/0) statements

For flexibility, prograns are genedly written so tha the daa
that they work on exists outside the program In the wages
example the details for each pe'sonemployed woud exist in
a file somewhere, and there would be a record for each per
sonin this file. This means tha the progam woud nat have
to be madified each time a personleft, wasill etc., athoud

Chapter 5

Intr odudion to Programming 39

the individud recordsmight be updded It is easier to madify
data than to madify a program, ard lesslikely to produe ur+
expected resuts. To be ale to vary the adion thee must be
sore mechanism in a progranming larguaye for getting the
daainto ard out of the pragram. This is doneusing input ard
output statemerts, sonretimesshorened to i/o staenments.

Let us now conside a simple program which will read in sorrebody’s name
and print it out.

PROGRAM INOUT

C

C This program reads in and prints out a name

C

CHARACTER NAME*20

PRINT * Type in your name, up to 20 characters’
PRINT *,;” enclosed in quotes’

READ *NAME

PRINT *NAME

END

Thee are severd vety impartant points to be covered here, and they will be
taken in tum:—

Ead lineis a saement.

Thee is a seqence to the siatements. The staements will be
processed in the orde that they are presented, so in this example
the sequence is print, print, read, print.

Staenments start in column 7. There are exceptionsto this rule, as
we will see later, but, neverthdess,the main pat of ary statemernt
must lie beéween columns 7 and 72 This is an inheited feature
which goes bad to the days when communicaion with a com-
puter was through 80-column cards. The lasteight columns were
often used for sequercing information (just in case you dropped
your cads!). For temind use having to stat in column 7 can be
irritating; but since you are using a terminal, there will probably
be tab commandsyou can use so that you skip over the first few
columns by pressng asingle tab key.

Thefirst staement nanes the program. It makes senseto choosea
name tha conweys sonething abou the purposeof the program.

The next three lines are commen statements. They are identifi ed
by a C in the first colunn. This is your first exception to the
column 7 rule above. Comments are inserted in a program to ex-
plain the purpcse of the program. They shoutl be regarded as an

40

Intr odudion to Programming Chapter 5

integral pat of al programs. It is essential to getinto the habit of
inseting comments into your prograns straight away.

The CHARACTER statemert is a type declaration. It was men
tioned eallier tha there are different kindsof data. There must be
sone way of teling the progranming language tha this daa is of
a certain type, and tha theefore certain kinds of opedaion are
alowead and othes are banned or just plain stupid! It would nat
make senseto add a nane to a number, e.g. wha does Fred+10
mear? Sothis statemen defines tha the variable NAME to be of
type CHARACTER and only charader opeaions are pemitted.
Theconcept of avariable is coveredin the next section.

The PRINT staements print out an informative messge to the
temind — in this case a guide asto wha to type in. The useof
informaive messges like this throughout your prograns is
strongly recommended

The READ stdement is one of thei/o statements. It is an instuc
tion to read from the termind or keyboad; whatever is typedin
from the terminal will end up being assodated with the variable
NAME. Input/output steterments will be explained in greder ddail
in later sections.

The PRINT staement is arother i/o staement. This statement will
print out what is assoated with the variable NAME and in this
case, wha you typed in.

The END staement terminates this program It can be thoudt of
as being similar to a full st in naturd language, in that it fin-
ishesthe program, in the saneway tha a. ends a sentence.

Note dso the use of the‘*" in three different contexts.

Lasty, when you do run this program, you must put a prime or
apostophe (') before the characters you inpu, and another prime
or apostrphe after them. These apostophes will not be printed
out by the progam. This fedure is a result of usirg READ * to
input the characters, and later we will see ways of awiding the
useof apostophes.

The alove program illustrates the useof some of the statements in the Fortran
language Let us consder the action of the READ * staement in more ddail. In
paticular, wha is meant by avariade ard avaue

Variables — name, type and value

Theidea of a variable is onetha you are likely to have me bore, probably in
a matherretical context. Consicer the following

Chapter 5 Intr odudion to Programming 41

tax payable = gross wages — tax allowances * tax rate

Thisis a simplified equéion for the cdcuation of wage dedudions. Each of the
variables on theright hard side takeson a value for each person,which alows
the calculation of the deductions for tha person. The above equation expresse
in Fortran would be an example of an arithmeic assigiment staemer. Theeis
sone arithmeic calculation taking place which yields a value, and this valueis
then assgnel to the variable on the left hand side This could be expres=d in
Fortran as

TAX= (GROSS-RXALL) * TAXRAT

Note here the shortered form of the variable names. This is dueto oneof the
rules of Fortran — a varialle name must be six dphanumeric charaders (letters
and numbers) or lessin lergth, and the first character must be a letter. A pro-
gram typically consistsof data processimy statemerts tha invave variades. It is
a good idea to choosevariable names tha convey sonmething meaningfu about
the useof tha variable. Ocasiorally it is difficult to find meaningfu names of
only six characters, and it is nat always easy to see wha a variable is usal for.
In the problems, try to choosevariable names tha convey sorething meanng-
ful about the useof thevariable.

The following arithmdic assignment statement illustrates clearly the concepts
of name and vaue, and the difference beween the = in mathematcs and com-
puting:—

I=1+1
In Fortran this reads as take the curent value of thevariabe | ard add oneto it,
stote the new value badk into thevariable |, i.e. | takesthevaue I+1. Algebra-
cally,

i=i+1
does not make ary sense

Variables can be of different types, ard the following show sone of those
availade in Fortran.

Variable Data Value
name type stored
GROSS REAL 944030
TAXAL L INTEGER 2042
TAXRAT REAL 7

NAME CHARACTER ARTHUR

42

Intr odudion to Programming Chapter 5

The conaept of data type seems a little strange at first, espeially as we com
monly think of integers and reals as nunbeas. However, the bendits to be
ganed from this distinction are consideable. This will become appaent after
writing seeral progams.

Let us consicer anothe progam now. This program reads in three nunbes,
addsthem up and prints out both the totd and theaverace.

C

PROGRAM AVERAG

C THIS PROGRAM READS IN THREE NUMBERS AND SUMS
C AND AVERAGES THEM.

C

Notes

REAL NUMBR1,NUMBR2,NUMBR3,AVRAGE, TOTAL

INTEGER N
N=3
TOTAL = 0.0

PRINT *’TYPE IN THREE NUMBERS’

PRINT *’SEPARATED BY SPACES OR COMMAS’
READ *,NUMBR1,NUMBR2,NUMBR3

TOTAL= NUMBR1+NUMBR2+NUMBR3
AVRAGE=TOTAL/N

PRINT *'TOTAL OF NUMBERS IS’ TOTAL

PRINT *’AVERAGE OF THE NUMBERS IS’ AVRAGE
END

The program has been given a name that means sonething. As
Fortran only dlows a six character name, AVERAGE, with 7 let
ters, could not have been usel.

There are comments at the stat of the progam describing what
the programdoes.

The next two statements are type dedaratons. They deine the
variables to be of real or integer type Remember integers are
whole numbers, while real numbers are those which have a deci-
mal pant. For exanple, 2 is an integer, while 2.7, 2.0000M01,
and 2.0 are all red numbes. One of the fundamental distindions
in Fortran is between integes ard reds. Type dedaraions must
aways come at the stat of a program before any processng is
done

The first PRNT staement mekes a text messge (in this case
wha is beween the apastrophes) appear a the termina. As was
staed eadier it is good prectice to put out a message like this so
tha you have sonre idea of what you are suppaed to typein.

Chapter 5 Intr odudion to Programming 43

« The READ statement looks at the input from the keyboad (i.e
wha you type and in this instance assodates these values with
the threevariables. Thesevdues can be se@ratd by commas (,),
spaes (), or even by pressing the carriage retum key, i.e. they
can appear on sepaate lines.

* Thenext statemen actually does sorre daa processing. It adds up
the values of the three variades (NUMBR1, NUMBR2, and
NUMBR3), and asdgns the result to the varable TOTAL. This
staement is called an arithmetc assignment staemen, and is cov-
ered morefully in the next chepter.

* The next siatement is anothe daa proasdng staement. It cdcu
lates the average of the numbers entered ard assignsthe resut to
AVRAGE. We coud hawe adudly usal the value 3 here insteal,
i.e written AVRAGE=TOTAL/3 and had exadly the same effect.
This would also have avoidad the type declaration for NUMBER.
However the origind example follows estalished progamming
pradice of declaring all variables and establishing ther meaning
unambiguausly. We will see furthe exanples of this type
throughou the book.

» Finally the sumand average are printed out with suiable capgtions
or headings. Do not write programs withou putting captions on
the resuls. It is too easy to make mistées when you do this, or
even forge what each numbe means.

Default variable types

The example usal variables which hdd red nunmbeas and intege's. These are
declared explicitly in the declaration statements at the beginning of the pro-
gram. In genad, we recommerd the use of such exlicit typing, where you
declare your variables and their characteristics. However, you may aso use
default typing, where the initial leter of the variade name indicates its type —
real or intege. Theinitial letter 1, J, K, L, M or N is usa to identify integer
variades. Any othe letter identifies a red variable. Thus, if you choose to
employ ddault typing, and not override it by an explicit reference, X1, QUAD,
HALF and ONE are all red varialdes, while NINE, INVERT, KOUNT ard L2
are integers. Note that there is no default for character type variables; character
variades must be dedared explicitly.

Some more Fortran rules

Thee are certain things to learn abou Foitran which have little immediate
meaning, ard sonme which have no logicd justification at all, other than histori-
cal precedence. Why is a ca called a ca? At the end of sorre of the chapers

44 Intr odudion to Programming Chapter 5

there will be a brief summary of these rules or reguations when necessay.
Here are afew-

 Theeis an orde to the siaements in Fortran Within the context
of whatyou have covered sofar, theorde is:-

* PROGRAMstaenent

* Type declarations, eg. INTEGER, REAL or
CHARACTER

e Proessngandi/o stgements

* END statment
« Comments may appexr anywhee in the progam after PRO-

GRAM and before END, and musthawe a C or * in the vety first
colum.
Fortran Charader sa
The Fortran character se comprises thefollowing characters -
Capita A through Z
Thedigits O through 9
and the characters:-
= egqual
+ plus
—minus
* asterisk
/ sleshor obique
(left brackets (parenthesis)
) right brackets (parenthesk)
, comma
. dedmd point
$ currengy symbol
' apostophe
: colon

blank (difficult to see as a character!)

Chapter 5 Intr odudion to Programming 45

Problems

1. Write a progam tha will read in your name and address and print them out
in reverse orcer.

2. Typein the progran AVERAG, given in this chgpter. Demonstrde that the
input may be sepaated by spaesor commas.Do you need the decimal point?
What hgppens whenyou typein too much daa? What hgppers when you type
in too little?

6

Arithmetic

Taking Threeasthe subgpd to reason abou —
A conwenient numbe to stae —

Weadd Sewen, and Ten, and then multply out
By OneThousanddiminishel by Eight.

Theresuk we procedl to divide, asyou see
By Nine Hundred and Ningy and Twa

Then subtact Seventeen and theanswe mustbe
Exadly and pefectly true.

Lewis Carroll, “‘The Huning of the Srark’
Aims

The aims of this chepter are to introdue—
» therules for the evaluation of an arithmetic expression

» theidea of trunction and rounding of a number, and the care that
mustbetaken

* toensuetha an aiithmetc expressionis evauaed as you intend

* the useof the PARAMETER statment to ddine or setup con
Stants

* the idea tha numbers on a computer have a finite size and pred-
sion

Chapter 6 Arithmetic 47

Arithmetic

Most problems in the educaional and sdentific community require arithmetic
evaluation as part of the algorithm. As therulesfor the evaluaion of arithmetic
in Fortran may differ from thosethat you are prabebly familiar with, you need
to learn the Fortran rules thorougHy. In the prevous chapter, we introducd the
arithmetic assignmert statement, emphasising the concets of name, type ard
vaue. Here we will consder the way tha arithmetic expressiors are evauated
in Fortran

Thefollowing are thefive arithmetic operators available in Fortran—

Mathematical operaion Fortran symbol
or opegator

Addition +

Subtaction -

Division /

Multiplication *

Exponentiation *x

Exporertiation is raising to a power. Note that the exponentiation operator is
the * character twice.

Thefollowing are sone exanples of valid arithmetic statemerts in Fortran—

TAX = GROSS — DEDUCT
COST = BILL + VAT +SERVIC
DELTA = DELTAX/DELTAY
AREA = Pl * RADIUS * RADIUS
CUBE =BIG ** 3

The abowe expressiors are al simple, and there are no problems when it comes
to evaluaing them However, now conside thefollowing=

NETT = GROSS — ALLOW * TAXRAT

This is anbiguous. There is a chaice of doing the subtaction before or after the
multiplicaion. Experience with a cdcuator sas tha the subtradion woud be
dore before the multiplication. However, if this expressim was evauaed in
Fortran the mutiplication would be done beforethe subtaction.

Here are the rules for the evaluation of expressiors in Fortran:—

» brackets are used to ddine priority in evduaton

48 Arithmetic Chapter 6

» opedors have a hierarchy of priority — a precedence. The hierar-
chy of opeatorsis—

* exponentiation; when the expresson has multi-
ple exponentiation, they are evauated right to
left. For example,

L= gk

is evauated by first raising J to the powe K, ard
then usingthis result asthe exporert for I; more ex-
plicitly therefore

L=1(J** K)

Although this is similar to the way in which we
might exped an algelraic expression to be evauaed,
it is not consistent with the rules for multiplicaion
and division, and may leal to sone confusion. When
in doubt use brackets.

* multiplication and division; within successve
multiplicaions and divisions,the order of evalu-
aionis left to right. For example

A=B*C/D*E

would result in B and C bang multiplied together;
this resut divided by D; and lasty the resut of the
division bang muitiplied by E.

* addition and subtradion; as with multiplica-
tion and division evauaton is caried on from
left to right Howewer, it is seldomthat the order
of addtion and subtaction is importart, unless
other opeaatorsare involved.

Thefollowing are dl examples of valid arithmetic expressiors in Fortran:—

SLOPE = (Y1-Y2)/(X1-X2)
X1=(-B+((B*B-4*A*C)**0.5))/(2*A)
Q=MASSD/2*(MASSA*VELOCA/MASSD)**2+((MASSA*VELOCA)**2)/2

Note that brackets have been usedto make the order of evauaton more obvi-
ous.lt is often possilbe to write invaved expressonswithout brackets, but, for
the sale of clarity, it is often bestto leave the brackets in, even to the extent of
inserting a few extra to ensurethat the expression is evauaed corredly. The
expressionwill be evduated just as quickly with the brackets as without Also
note that none of the expressims are patticuarly complex. Thelast oneis about
as complex as you shoud try: with more complexity than thisit is easy to make
a mistake.

Chapter 6 Arithmetic 49

Prodems arise when the vaue tha a faulty expressim yields lies within the
range of expected vaues and the error may well go uncetected. This may ap
pear strange at first, but, a computer does exactly what it is instuded. If,
throuch a misurderstanding on the pat of a progranmer, the program is syn
tectically correct but logicdly wrong from the point of view of the problem
definition, then this will not be spoted by the compiler. If an expressim is
complex, break it downinto sucessivestatemerts with elements of the expres-
sionon each ling eg.

TEMP = B*B-4*A*C
X1 = (=B + (TEMP**0.5))/(2*A)

and

MOMENT = MASSA * VELOCA
Q = MASSD/2*(MOMENT/MASSD)**2+(MOMENT**2)/2

Rounding and truncation
When aiithmetic calculations are performed ore of the following can occur:—

e truncation. This opeaton involves throwing away pat of the
number, e.g. with 146 truncatng the number to two figures leaves
14

* rounding. Consicer 146 agan. This is rounda to 15. Basicaly,
the nunbe is changal to the nearestwhde numbe. It is still a
rea numbe. Wha do you think will hgppen with 145, will this
berounded up or down?

You must be aware of thesetwo opeaions.They may occasiondly cause prob
lems in division and in expressionswith mare than onedaatype

To see some of the problemsthat can occur conste the examples below—

REAL AB,C
INTEGER |
A=15

B=2.0
C=A/B

I=A/B

After executing these stgenents C hasthevaue 0.75, and | has thevaue zero!
This is an example of type conversion aaoss the = sign. The variables on the
right are al real, but the last variable on theleft is integer. The vaue is there-
fore made into an integer by truncaton. In this exanple, 0.75 is real, so |
becomeszero when truncaton takes place.

50 Arithmetic Chapter 6

Corsider now an example where we assigninto a real varialde (so tha no
truncation dueto the assignmert will take place), but where pat of the expres-
sionon theright hard sideinvolvesinteger division.

INTEGER |,J,K
REAL ANSWER
=5
J=2
K=4
ANSWER=I/J*K

Thevaue of ANSWER is 8, becausethe I/J temm involvesinteger division. The
expected answerof 10 is not tha differert from the actual one of 8, ard it is
case like this that cause proddems for the unway, i.e where the caculatd
result may be closeto the adud one In complicated expressonsit woud be
easyto misssonething like this.

To recep, truncation takes place in Fortran
e &crossan = sign,when aredl is asigne to aninteger,
* inintegerdivision

It is very imporiant to be careful when attenpting mixed mock arithmetc — that
is, when mixing reds and integers. If ared and integer are togethe in a divi-
sionor mutiplication, the resuk of tha opeation will be red; when addition or
subtaction takes place, in a similar situaton, the result will aso bereal. The
problem arises when sone parts of an expression are calculated using integer
arithmetic, and other parts with real arithmetic—

C=A+B-1/3J

Theintege division is carried out before the addition ard suliraction, hence the
result of 1/J is integer, dthough all the othe pats of the expresson will be
carried out with real arithmetic.

Example program

How Iong does it take for light to reach the Earth from the Sun?Light travels
946 10 km in oneyear. We can take a year as bang equivdent to 36525
days. (As all schod-children know, the astronomical yesr is 365 days, 5 hours,
48 minutes and 45.9747 seconds — hardly worth the extra effort.) The distance
beween the Earth and Sun is abou 150000,000km. There is obviously a hit of
impredsion involved in these figures, not least since the Earth moves in an
eliptica orbit, not a circular one Onelastpoint to note before preseriing the
program is that the elapsed time will be given in minutes and seconds. Few
people reaily grasp fractiond parts of ayear.

Chapter 6 Arithmetic 51

PROGRAM TIME
REAL LTYR, LTMIN, DIST, ELAPSE
INTEGER MINUTE, SECOND
C
C LTYR :DISTANCE TRAVELLED BY LIGHT IN ONE YEAR IN KM
C LTMIN :DISTANCE TRAVELLED BY LIGHT IN ONE MINUTE IN KM
C DIST :DISTANCE FROM SUN TO EARTH IN KM
C ELAPSE:TIME TAKEN TO TRAVEL A DISTANCE DIST IN MINUTES
C MINUTE:INTEGER NUMBER PART OF ELAPSE
C SECOND:INTEGER NUMBER OF SECONDS EQUIVALENT TO
C FRACTIONAL PART OF ELAPSE

C
LTYR=9.46*10**12
LTMIN=LTYR/(365.25*24.0*60.0)
DIST=150.0*10**6

C
ELAPSE=DIST/LTMIN
MINUTE=ELAPSE
SECOND=(ELAPSE-MINUTE)*60

C
PRINT *” LIGHT TAKES ",MINUTE, MINUTES’
PRINT *; ,$SECOND,” SECONDS’
PRINT *’ TO REACH THE EARTH FROM THE SUN’
END

The calculation is straightforward; first we calculate the distance travelled by
light in one minute, ard then usethis value to find out how many minutes it
takes for light to travel a setdistarce Semraing thetime takenin minutes into
whole nunmbea minutes ard seconds is accomplished by exploiting the way in
which Fortran will truncae areal number to aninteger on type conveasion. The
difference beween thesetwo vaues is the part of a minute which needs to be
conveted to seconds. Given the inaccurades dready inheent in the exercise,
there seens little point in giving dedmad paits of a second.

It is worth noting tha somre studure has been attempted by usirg comment
lines to separate parts of the program into fairly distinct chunks.Note also that
the commert lines descibe thevariables usel in the progam.

The PARAMETER statement.

This staement is usel to provide a way associating a meaningful name with a
constant in aprogram. Conside a progam where Pl was gang to beuseda lot.
It would be silly to have to typein 3.14159653% etc. every time. There would
be a lot to type and it is likely tha a mistake could be made typing in the
correct vaue It therefore makes senseto setup PI once and then refer to it by
name. However, if Pl was just a vaiiable then it would be possble to do the
following:—

52 Arithmetic Chapter 6

REAL LI,PI

P1=3.14159265358

PI=4*ALPHA/BETA

The PI=4*ALPHA/BETA staement shodd have been LI=4*AL PHA/BETA.
Wha has hgppendl is tha, througha typing mist&ke (P ard L are closetogahe
on a keyboad), an error hascrept into the progam. It will not be spoted by the
compiler. Fortran providesa way of helping here with the PARAMETER state-
mert, which should be preceded with a type declaration. The following are
correct examples of the PARAMETER statemert:—

REAL PI,C
PARAMETER (PI1=3.14159265358,C=2.997925)

and

REAL CHARGE
PARAMETER (CHARGE=1.6021917)

The advantage of the PARAMETER staement is tha you coud not then assig
anothe valueto PI, C or CHARGE. If you tried to do this, the compiler would
geneate an emor messagye

A PARAMETER staement may contain an anithmetc expression, sothat sone
rlatively simple arithmeiic may be peformed in setting up these constants. The
evaluation must be confined to addition, suliraction, multiplication, division
and intege exporertiation. The following examples hdp to demonstrae the
possililities

REAL PARSEC,PI,RADIAN

PARAMETER (PARSEC=3.08*10**16)
PARAMETER (PI1=3.14159265358,RADIAN=360./PI)

Precision and size of numbers

The precision and the size of a number in computing is directly related to the
nunmber of bits alocated to its internd represenation. On a large nunbe of
computers this is the sane as the word size. The following summerises this
information for threemadines.

Chapter 6 Arithmetic 53

Machine and Maximum Smdlestred

word size (bits) Integer Largestred

Cray (2**63)-1 100E-2466

(64) 70387447763 0.1363E+2466

CDC (2**48)-1 3.131513082514-294
(60) 281449®671®55 12650408171FE+322
VAX (2**31)1 029E38

(32 214783617 1.7E38

IBM PC (2*+31)1 029E38

(8,16and 32 214783617 1.7E38

Precision is not the sane as acauragy. In this age of digita time-keeping, it is
easy to provde an extrenmely predse arswer to the queston What time is it?
This arswer need not be accurde, even thoughit is reported to tenths (or even
hurdredths!) of a second. Do not be fooled into bdieving tha an answe re-
ported to ten places of decimals mustbe acaurate to ten places of decimals. The
computer can only retain a limited precision. When caculatons are performed,
this limitation will tend to gererate ineccuradesin the resuk. The estimaion of
sud inaacurecies is the domain of the branch of mathematics known as Nu-
merica Anaysis.

To give sore idea of the problems, consider an imaginay decimal computer,
which retains two significant digits in its calculatons. For example, 1.2, 120,
1200 and 0.12 are dl given to two digit precision Note therefore tha 12345
would berepresated as 12000 in this device. When any arithmetic operaion is
carried out, the resut (including ary intermediate calculations) will have two
signficart digits. Thus

130+12 = 140 (rounding down from 142)
and similarly

17/3 = 5.7 (rounding up from 5.666666...)
and

16*16 = 260

54 Arithmetic Chapter 6

Whee there are more involved calculations, the resuks can become even less
atractive. Assumewe wishto evauate

(16*16) / 0.14

We would like an arswer in the region of 18285718, or, to two significant
digits, 18@.0. If we evaluate the terms within the brackets first, the answe is
2600.14, or 1857.1428 190Q0 on the two digit machine Thinking tha we
could do beter, we could re-write thefraction as

(16/0.14) * 16
This gives aresult of 180Q0.

Algelra showsthat al theseevaluaionsare equivalent if unlimited precision is
availale.

Cae shauld also be taken whenis oneis near the nunericd limits of the ma-
chine. Corsider the following

Z=B*C/D

where B, C and D are all 10°° and we are using a VAX or IBM PCwhere the
maximum red is appraximately 10%8 Here the produd B * C generatesa nunm
be of 10° — beyond the limits of the machine This is cdled oveflow asthe
number is too large. Note tha we coud avoid this prodem by retyping this as

Z =B *(CI/D)
whee theintermediate resuk would now be 1030/1030, ie 1.

Thee is an invase cdled undeflow when the numbe is too sndll, which is
illustrated bdow.

Z=X1*Y1*71

whee X1 ard Y1 are 102° ard Z1 is 10°°. Theintemediae result of X1 * Y1
is 1070 — again beyond the limits of the machine This problem could have
been overcome by retyping as

Z=X1*(Y1*Z1)

Thisis a paticular prablem for many sdentists ard engineers with al machines
that use32 bit arithmdic for integer andreal calculations. This is becausemary
physical constants, et are arourd the limits of the magnitude (large or smell)
suppeted by sinde predsion. This is rarely a problem with the Cray or CDC
madines.

Chapter 6 Arithmetic 55

Summary
* learn therules for the evaludion of arithmetic expressions;

* break expressiors down where necessay to ensuretha the expressims are
evaluatedin the way you want,

* teke care with truncation dueto intege division in an expression Note that
this will only bea problemwhere both parts of the divisionare INTEGER

* take care with truncation due to the assignment stadenent when there is an
integer on the left hand sign of the statement, i.e assigring a red into an inte-
ger varialde;

» when you want to sa& up consarts, which will remain uncharged throughout
the program, use the PARAMETER statemert;

* donat confuse precision and acauragy.

Problems

1. Modify the program tha read in your name and addressto also read in ard
print out your age, telephore number and sex.

2. Oneof the easestways to write a programis to modify an existing one. The
example given eallier, dedling with the time taken for light to travel from the
Sunto the Eatth, could form the basis of severd other progams.

(i) Many communications sadlites follow a gecsynchrorous
orhit, sorre 35870 km abovethe Eaths suface Wha is the
time lag incured in usirg one sud satellite for a telephone
conveasdion?

(i) The Moon is about 384400 km from the Eath on aver-
age Wha implicdions does this have for contol of
expeaiments on the Moon? Wha is thetime lag?

(iii) The following table givesthe distarce in Mkm from the
Sunto theplarets in the Solr Systen:

Mercury 579
Verus 1082
Eath 1496
Mars 2279
Jupiter 7783
Saurn 1427
Uranus 28696
Nepune 44966

Plub 5900

56 Arithmetic

Chapter 6

Usethis information to find the greatest and least time taken
to send a messge from Earth to the other plands. Assune
that al orbits are in the sane plare and circuar (if it was
god enoudh for Copernicus, its good eroughfor this exam-
ple). For al practicd purposes,the speed of light in vacuum
is a constant, and therefore an excellent canddate for a PA-

RAMETER statement. Useit.
3. Write aprogam to readin, sum and averagefive numbers.

4. Write a program to calculate the period of a penddum. Use the following

formua:—

T=2*PI*(LENGTH/9.81)**.5

Cdculate the period for at least5 values of the length. The length (LENGTH)

is in metres,ard thetime (T) in seconds.

5. Unit pricing: the following tale givesthe price and weight of various cereals

avallalde in theloca supemarket.

Ceeal Price Weight (grams)
Frostys 75 375
Speid L 76 250
Rice Crispys 71 295
Rice Crispys 97 440
Bran Bits 85 625
Raisin Bran 84 375
Icicles 67 280
Frostys 58 250
Cowm Puffs 77 280
Huffa Puffa Rice 76 230
Friends Oas 74 750
Weetabits 40 375
Welsh Paage Ods 74 750
More 61 250
Korn Flakes 81 500
Korn Flakes 65 375

Which of these gives bestvalue for money, in terms of cost per gram (i.e. unit
pricing)? Which givesthe poorest value, on the sane criterion?

Chapter 6 Arithmetic 57

5. Write a progam tha teststhe predsion and size of nunmbers of the systen
you use Finding out the word size of the machine you work with is the first
stgp. Then try some multiplication and division, and see wha sort of error
messges you ge as the numbers beame too snell and too large

v

Arrays and DO loops

Thy gifts, thy tables, are within my brain
Full charadered with lasing memory

William Shakespeare, ‘The Sonrets’

Aims

The aims of this chepter are—

to introduce the ideas of tables of daa ard sone of the formal
tems usel to desaibe them

e Array
e Vector
e Listandlinear list

to disaussthe array as a randan aaess strudure where any ele-
ment can be accessd asreadily as any other

to notethatthedaain an array is al of the sametype

to introduce the twin concepts of daa structure and correspording
contol strudure

to introduce the staements necessay in Fortran to supprt and
manipulate these daa structures

Chapter 7 Arraysand Do Loops 59

Tables of data

Corsider the following:—

a Telephonedirectory
A telephonediredory conssts of thefollowing kinds of entries=

Name Address Numbe
Adcroft A. 61 ComaughtRoa, Roah, Cadiff 22339

Bede K. 14 Airecale Road, Balham 7459870
BluntR.U. 81 Stanlake Road, Shepherds Bush 67446
Sims Tony 99 Andover Road, Twickenhan 8987330

This structure can be consdeed in a variety of ways, but perhgs the maost
common is to recad it as a table of daa, where there are 3 colunns and as
mary rows asthere are ertries in thetelephonedirectory.

Corside now the way we extract informaion from this table. We would scan
the name column looking for the name we are interested in, and then read aong
the row looking for ether the address or telephone nunber, i.e we are using
the name to look up theitem of interest

o Bodk catalogue

An catalogue coud contain:—

Author(s) Title Publishe

Carol L. Alicethroudh thelooking Glass Perguin

Knuth D. Sem-nunericd Algorithms Addison-Wesley
Sténbeck.J Sweé Thursdy Penguin

Wiederhdd G. Database Design McGraw-Hill

60 Arraysand Do Loops Chapter 7

Again, this can be regaded as a table of data, having 3 cdumns and mary
rows. We would follow the same procedure as with the telephore directory to
extrad the information. We would use the Name to look up wha bodks are
availale.

o Examination marks or results

This could consistof:—

Name Physic Maths Histay Gearagphy French
Fowler .L. 50 47 89 30 46
BarronL.W 37 67 65 68 98
Warren J. 25 45 48 10 36
Mallory D. 89 56 45 30 65
CodlS. 68 78 76 98 65

This can agan be regarded as a table of data. This example has6 columns ard
5 rows.We would agan lookup information by using the Name.

a Monthly rainfall
Typicdly this would consistof:—

Month Ranfall
Januaty 104
February 111

March 83
April 75
May 32
June 46
July 32
August 45
Sepembe 21
Ocobe 31
November 101

Deembea 111

Chapter 7 Arraysand Do Loops 61

In this table there are 2 columnsand 12 rows. To find out wha the rainfall was
in July, we scan the talde for July in the Month column and locae the valuein
the samerow, i.e. therainfall figure for July.

These are just sorre of the mary examples of prablems where the daa tha is
being consdered has atabular stucure. Most gened pumposelarguayes there-
fore have mechanisms for deding with this kind of studure. Sone of the
special namesgiven to these strictures include—

e Linear list

e List
¢ Vector
e Array

The tem usel most often here, and in mostbooks on Fortran progamming, is
array.
Arraysin Fortran
There are three key thingsto consicer here—
» the ability to refer to a set or growp of itemsby a single nane;

» the ability to refer to individud items or members of this sd, i.e
look them up;

» the choice of a control structure that alows easy manipulaton of
this setor array.
The DIMENSION statement

The DIMENSION staement defines a variable to bean array. This sdisfies the
firstrequiremert of being able to refer to a se of items by a single name.

Sorme examplesare given bdow:—

DIMENSION WAGES(100)
DIMENSION SAMPLE(10000), MATRIX(100,100)
DIMENSION PHASE(10,10,10,2)

In each of these examples,the integer vaues in bradkets speify the maximum
number of items which may be kept in the array. In the caseof WAGES, up to
10G in thecaseof PHASE,up to 200Q

An index

An index enables you to refer to or sekct individud elements of the array. In
the telephore directory, book catdogue and exam maks tade we used the

62 Arraysand Do Loops Chapter 7

name to index or look up the items of interest in the monthly rainfal example
we used the month name to index or look up theitem of interest.
Control structure

The staement that is generaly used to manipulate the elemerts of an array is
the DO staement. It is typical to have severd statements controlled by the DO
staement, and the block of repeated staements is often called a DO loop

Letuslook at two complete programs that highlight the above.

Monthly Rainfall

Letuslook at this earlier exanple in more depth now. Consicer the following=—

Month Assodated integer Array Ranfall
represenation ard index vaue
Jaay 1 Ranfl(1) 104
Februay 2 Ranfl(2) 111
March 3 Ranfl(3) 83
April 4 Ranfl(4) 75
May 5 Ranfl(5) 32
June 6 Ranfl(6) 46
July 7 Ranfl(7) 32
August 8 Ranfl(8) 45
September 9 Ranfl(9) 21
Odober 10 Ranfl(10) 31
November 11 Ranfl(11) 101
December 12 Ranfl(12) 1112

Most of you should be familiar with the idea of the useof an intege asan
atemae way of represerting a month, e.g. in a date expressed as 1/3/1989, for
15! March 198 (arglicised style) or 3" Januay (americanised style). Fortran,
in common with other older progranming languages, only alows the use of
integers as an index into an array. Thus when we write a prog'am to use arrays
we have to map beween whaewer constrict we usein everyday life as owr
index (names in our examples of telephonedirectory, book caalogue, ard exam
marks) to an intege representdion in Fortran.

The following program reads in the 12 morthly values from the terminal, com
putes the sumand average for the year, ard printsthe average out

Chapter 7 Arraysand Do Loops 63

PROGRAM RAIN
REAL RAINFL, SUM, AVERGE
DIMENSION RAINFL(12)
INTEGER MONTH
PRINT *” Type in the rainfall values’
PRINT *;” one per line’
DO 10 MONTH=1,12
READ *, RAINFL(MONTH)
10 CONTINUE

DO 20 MONTH=1,12
SUM = SUM + RAINFL(MONTH)
20 CONTINUE
AVERGE = SUM / 12
PRINT *’ Average monthly rainfall was’
PRINT *, AVERGE
END

RAINFL is the array name The variade MONTH in bradets is the index. It
takes on vaues from 1 to 12 inclusive, and is usedto pick out or seed ele-
merts of the array. The index is thus a variable and this pemits dynamic
maripulation of theamay atrun time.

The gereral form of the DO staenent is:
DO label Counter = Start, End, Increment

The block of staenments tha form the loop are contained beween the DO state-
mert, which maks the beginning of the block or loop, ard the CONTINUE
staement with its assotted lakel, which marks the erd of the block or loop. In
Fortran, labds are integer items which occur in columns 1 to 5. They may be
placed anywhee in these cdumns, but may not stray into cdumn 6. Any
blarks in labds (and in staements too) are ignoral; the following are therefore
equivaent—

197 CONTINUE
197 CONTINUE
197 CONTINUE
197 CONTINUE

Any character othe than a blark or digit in a label will cawse an eror. Note
that the labds 010 and 10 are considered equivalent — the leading zeo is
ignored.

In this program, the DO loopstook the form:—

DO 10 MONTH=1,12 start
body
10 CONTINUE end

64 Arraysand Do Loops Chapter 7

and

DO 20 MONTH=1,12 start
body
20 CONTINUE end

The body of the loop in the program above has been indented This is not
required by Fortran Howewer it is goad practice and will make progams easier
to follow.

The numbe of times that the DO loop is executed is govened by the lastpart
of the DO staement, i.e by the=

Counter = Start, End, Increment

Sart, asit implies, is the initial value which the courter (or index, or control
varialde) takes. Each time the loop is executed, the value of the counter will be
increased by the value of increment, unil thevalue of end is reached.

If incement is omitted, it is assuned to be 1. No other element of the DO
staement may be omitted. In order to execute the statemerts within the loop
(the body) it must be passible to reach erd from start. Thuszero is an illecal
vaue of inaement. In the event tha it is not possibé to reach end, theloop
will not be exeauted and control will passto the staement after the end of the
loop.

In the examples above both loopswould be executed 12 times. In bath cases,
the first time roundthe loop the variade MONTH woud have the value 1, the
seond time roundthe loop the variade MONTH would have the vdue 2 etc.,
and the last time rourd the loop MONTH would have the value 12. It is cus
tomary to restrict the DO loop countr, start, end and increment variales to
integer values.

Pemles Weight's

Corsider the following:—

Peson Assodated integer Array and Assodated vaue
represeriation index

Andy 1 WEIGHT(1) 487

Barry 2 WEIGHT(2) 765

Cahy 3 WEIGHT(3) 585

Dawn 4 WEIGHT(4) 653

Chapter 7 Arraysand Do Loops

Elaine
Frank
Gordbon
Hannéh
lan
Jatnda

= © 00 ~N O U

WEIGHT(5)
WEIGHT(6)
WEIGHT(7)
WEIGHT(8)
WEIGHT(9)
WEIGHT(10)

887
675
567
66.7
706
999

65

We have ten people, with thar namesas shown. We assotate each name with
a number — in this casewe have ordered the names alphadicaly, and the
numbers therefore reflect their ordering. WEIGHT is the array name The num-
be in brackets is caled the index. The index is usel to pick out or sekct
elements of the array. Theefore the tade is read as ‘the first element of the
array WEIGHT has the value 487, the second element of the array WEIGHT

has thevaue 76 5.

There are two examplesin the progam bdow:-

PROGRAM SUMAVE
C

C THE PROGRAM READS UP TO 10 WEIGHTS INTO THE

C ARRAY WEIGHT
C VARIABLES USED

C WEIGHT, HOLDS THE WEIGHT OF THE PEOPLE

TOTAL, TOTAL WEIGHT

C
C
C
C
CT
C

REAL WEIGHT, TOTAL,AVERAG
INTEGER PERSON
DIMENSION WEIGHT(10)
TOTAL=0.0
DO 100 PERSON=1,10

READ *WEIGHT(PERSON)

PERSON, AN INDEX INTO THE ARRAY

AVERAG, AVERAGE OF THE WEIGHTS

TOTAL = TOTAL + WEIGHT(PERSON)

100 CONTINUE
AVERAG = TOTAL / 10
PRINT *’ SUM OF NUMBERS IS
PRINT *,” AVERAGE WEIGHT IS
PRINT *’ 10 WEIGHTS WERE "’
DO 200 PERSON=1,10
PRINT *WEIGHT(PERSON)
200 CONTINUE
END

" TOTAL
", AVERAG

HE WEIGHTS ARE WRITTEN OUT SO THAT THEY CAN BE CHECKED

66 Arraysand Do Loops Chapter 7

Higher dimensbon arrays

There are many instances where it is neessary to have arrays with more than
onedimension. Teake the following two examples:

o A Map

Corside the represenation of a map as a setof numbers. This might be done
as—

Latitude 1 2 3 4 5
Longitude

1 11.113.214.515.616.7

2 12.113.412.111.811.7

3 12.013.312.811.711.4

4 11.813.012.611.411.3

5 11.312.512.311.010.9

The vaues in the array are the heghts above sea level. A program to manpu-
late this daa structurewould involve sonething like the following=

PROGRAM LOCS8
C
C VARIABLES USED
C HEIGHT - USED TO HOLD THE HEIGHTS ABOVE SEA LEVEL
C LONGIT - USED TO REPRESENT THE LONGITUDE

C RESTRICTED TO INTEGER VALUES.
C AGAIN RESTRICTED TO INTEGER VALUES.
REAL HEIGHT

INTEGER LONGIT,LATUDE
DIMENSION HEIGHT(5,5)

DO 10 LATUDE=1,5
DO 11 LONGIT=1,5
PRINT *HEIGHT(LONGIT,LATUDE)
11 CONTINUE
10 CONTINUE

Note the way in which indentation has been usedto highlight the structure in
this example. The inne loopis sdd to be nested within the outer one It is very

Chapter 7 Arraysand Do Loops 67

common to ercounter problens where nesting is a naural way to expressthe
soluion. Nestng is pemitted to any depth.

Here are two examplesof vaid nested DO loops.

DO 1 Simple example of
two loopsboth
erding atthesane

DO 1 pointin the
progam.

1 CONTINUE
DO 1
DO 2
DO 3
Three loops
all nested
onewithin
theother.
3 CONTINUE
2 CONTINUE
1 CONTINUE

The first example showsthat more than one loop may end a the sane state-
mert. In gereral, we do not recommend this, not least since it mékes
indentation rathe awkward. Extra labds do not cost anything, and generdly
increasethe caomprehensibiity of a program.

The exanple bdow isillegal. A moment's thought showstha this must be the
case the effed of repeating statemerts has no meaning when the loops cross
oneanother.

68 Arraysand Do Loops Chapter 7

DO1

DO 2
1 CONTINUE
2 CONTINUE

Booking arrangementsin a theare or cinema

A theare or cinema consiss of rows and columns of seits. In alarge cinemaor
a typica theatre there would aso be mare than one level or storey. Thus, a
program to represent ard manipulate this strudure would probaly have a two
or three dimensioral aray.

Corsider the following progam extract—

PROGRAM THEATR
INTEGER ROW,COLUMN,FLOOR,NROWS,NCOLS,NFLOOR
DIMENSION SEATS(30,30,3)

DO 100 FLOOR=1,NFLOOR
DO 101 COLUMN=1,NCOLS
DO 102 ROW=1,NROWS
PRINT *SEATS(ROW,COLUMN,FLOOR)
102 CONTINUE
101 CONTINUE
100 CONTINUE

An interesting queston hee is wha is the best data type for SEATS. We will
leave the choiceto you.

Chapter 7 Arraysand Do Loops 69

Summary

The DIMENSION statment declares a variable to be an array. The DIMEN-
SION statement must come at the start of a prog-am unit, with other declarative
staements. To re@p the statemens covered so far, the order is sunmmarised
bdow.

PROGRAM first statemert
INTEGER in any order

REAL declarative
CHARACTER

DIMENSION

PARAMETER after othe declarative
Arithmetic assignment in any order

DO executable
CONTINUE

END last staement

* The statement usedmost often to manipulate arrays is the DO statement.
 Arrays canhawe up to 7 dimensions

» DO loops may benested, but they must not overlap.

Problems

1. Using a DO loop and an array rewite the program which calculated the
average of five numbers (question 3 in chapter 6) and increase the nunbe of
vauesread in from 5 to 10.

2. Modify this prog-am to sum and average people’s weights.

3. Genadise this progran by allowing an arbitrary number of weights to be
read in. What is a senside uppe bound here?

4. Modify the program tha read in your name to read in 10 names. Use an
array and a DO loop. When you have read the nanes into the array write them
outin reverseorde on s@aate lines.

70 Arraysand Do Loops Chapter 7

5. Combine the programs tha read in and calculate the average weight with the
onetha reads in peoples names. The progam should read in the weights into
onearray, ard the namesinto anothe. Allow 20 characters for the lergth of a
name. Print out a table linking names and weights, i.e. sonething like

Person Weight
Andy 48.7
Barry 76.5

6. How many distina lakels coud you have in a progrant?

8

Arrays ard DO loops (2)

Here, take this book and peruseit wdl:
Theiterating of these lines bringsgold;

Christopher Marlowe ‘The Tragical Histary of Doctor Faustus’
Aims

The aims of this chepter are—

* to extend theidess covered in thefirst chgpter on arrays, with the
aid of severa concrete examples

* tointrodwcean exendal form of the DIMENSION staement

e to introduce the correspording altemaive form to the DO state-
ment, to help marpulate the array in this new form

* tointroduce the DO loop as a mecharism for the control of repei-
tion in generd, notjust for maripulating arrays

72 Arraysand Do Loops (2) Chapter 8

Example 1

Corsider the prodem of an expaiment where the indegpendent varialle voltage
varies from —20 to +20 volts and the current is measued at 1 volt intervals.
Fortran has a medhanismfor handling this type of problem:—

PROGRAM RESULT
DIMENSION CURRNT (—20:20)
REAL CURRNT,RESIST
INTEGER VOLTAG

DO 10 VOLTAG=-20,20

CURRNT(VOLTAG)=VOLTAG/RESIST
10 CONTINUE

END

We appreiate that, due to experimerta error, the voltage will not have exact
integer vaues. However, we are inteestal in representing and maripulating a
setof values,and thus from the paint of view of the problem soluion and the
program this is areasormtde assurption.

There are seweral thingsto note here—
* This form of the DIMENSION statemen—
DIMENSION CURRNT(FIRST:LAST)

is of consderable usewhen the prodem hasan effective index which does not
stat a 1 (asimplied by the original form of the statement).

» There is a correspording form of the DO statment which allows processimg
of problems of this nature. This is shown in the albove progam. The gereral
form of the DO statement is therefore—

DO label counter=start, end, increment

where start, end and incremert can be pasitive or negdive.

Note tha zero is a legitiméae vaue of the dimension limits and of a DO loop
index.

Chapter 8 Arraysand Do Loops (2) 73

Example 2

Corsider the problem of the production of a table linking time difference with
longitude. The values of longitude will vary from —180to +180 degrees, ard
the time will vary from +12 hoursto —12 houss. A passible progran segnent
is—

PROGRAM ZONE
DIMENSION TIME(-170:180)
REAL TIME

INTEGER DEGREE,STRIP

DO 10 DEGREE=-170,180,10
VALUE=DEGREE/15.
DO 11 STRIP=0,9
TIME(DEGREE+STRIP)=VALUE

11 CONTINUE
10 CONTINUE

END
Notes

» Thevalues of thetime are not being cdcuated a every degreeinterval.

» Thevatriable TIME is areal variable. It would be possble to arange for the
time to be an integer by expressing it in either minutes or seconcks.

» This example takesno account of al thewiggly bits se@raing time zones,or
of British Summer Time

Example 3

Corsider the producion of a talle of temperatures. The indgendert vaiable is
the Fahrerhdt vaue; the Cdsius tenperature is the deperdent variable. Strictly
speking, a program to do this doesnot have to have an array, i.e the DO loop
can be usel to control the repdition of a set of staements tha make no refer-
ence to anarray.

The following page shows a possilbe progam segmert.

74 Arraysand Do Loops (2) Chapter 8

PROGRAM CONVRT
INTEGER FAHREN
REAL CELSIU

DO 100 FAHREN=-100,200

CELSIU=(FAHREN-32)*5./9.
PRINT *,FAHREN,CELSIU

100 CONTINUE
END

Note here tha the DO staement hasbeen usedonly to contol the repdition of
a bloc of staements. In the conversion of Fehrenhet to Celsius, we multiply
by 5/9. rathe than5/9; do you recl why?

This is the othe useof the DO statemert. The DO loop thus has two fundions,
its use with arrays as a control structure and its usesolely for the repetition of
ablock of satements.

Example 4

In the calculaion of the mean and standad deviation of a list of numbers, we
may usethe following formulae It is nat actudly necessay to store the vaues,
nor to acaumulate the sumof the vduesand their squaes. In thefirst case,we
would possilty requre a large aray, while in the seond, it is conaivalde that
the accumulated values (espedally of the squares) might be too large for the
madcine The following example uses an updating technique which avoids
theseproblens, but is still accurae. The DO loop is simply a control strudure
to ensurethat al the vaues are readin, with theindex being usel in the cdcu-
lation of theupdates.

PROGRAM MEANSD
C
C VARIABLES USED ARE

C MEAN - FOR THE RUNNING MEAN
C SSQ - THE RUNNING CORRECTED SUM OF SQUARES
C X - INPUT VALUES FOR WHICH MEAN AND SD REQUIRED
C W -LOCAL WORK VARIABLE
C SD - STANDARD DEVIATION
C R -ANOTHER LOCAL WORK VARIABLE
C
REAL MEAN,SSQ,X,W,SD,R
INTEGER |
MEAN=0.0
SSQ=0.0

PRINT *, ENTER THE NUMBER OF READINGS’

Chapter 8 Arraysand Do Loops (2) 75

READ* N
PRINT*’ ENTER THE ’,N,’ VALUES, ONE PER LINE’
DO 1 I=1,N
READ* X
W=X-MEAN
R=I-1
MEAN=(R*MEAN+X)/I
SSQ=SSQ+W*W*R/I
1 CONTINUE
SD=(SSQ/R)**0.5
PRINT *’ MEAN IS ’,MEAN
PRINT *’ STANDARD DEVIATION IS *,SD
END

Summary

» The DIMENSION staement alows limits to be spesified for a block of infor-
maton which is to betreated in a common way. Thelimits mustbeinteger, ard
the second limit mustexceed thefirste.g.

DIMENSION LIST(~123:~10)
DIMENSION X(0:2000)
DIMENSION VALUE(1:100)

Thelast exanple coud equdly bewritten
DIMENSION VALUE(100)

where thefirst limit is omitted and is given the default value 1. Thearray LIST
would contain 114 values, while X would contain 2001

* A DO statemert ard its correspading CONTINUE statement ddfine a loop.
The DO statemert provides a stating vaue, terminal vaue, ard, optiondly, an
increment, for its index or courter.

» Althoudh thesevauesneed nat be integers, you are strangly advised to make
them so. The increment may be negaive, but shodd never be zero. If it is not
present, the default value is 1. It must be possble for the terminaing vaue to
bereached from the starting value

» The counte in a DO loop is idedly suited for indexing an array, but it may
be usedanywhere tha repdition is needed, and of coursethe index or counter
need not be usel explicitly.

Problems

1. Write a program to print out a table of vaues for the convesion from litres
to pints.

76 Arraysand Do Loops (2) Chapter 8

2. Write a progran to print out the 12 timestable. Typical output would be of
the form:

1 * 12 = 12
2 * 12 = 24
3 * 12 = 36

€tc.

3. Conplete the program which calculates a table of Falrenhet ard correspond
ing Cdsius temperaures. Employ the PARAMETER statemert for the constant
term.

4. In orde to ohtain some impressionof the inaccuracies generated by limited
precision, try the following. Teke the square root of an inpu vaue a given
nunbe of times (i.e. raise it to the powe 05); reaeate the the origind value
by squaring the resutking value the same nunbe of times. Intuitively, the stat-
ing and recreaed value should be the sane but the limited machine precision
will lead to someinaccurecy.

9

Output: An Introduction

Why, soméimesl’ve bdiewed as manyas six impossiké
things before breakfast.

Lewis Carroll, ‘Alicethroughthe Looking-Glass’
Aims

The aims here are to introdue the facilities for produdng neat output, and to
showhow to write resuts to afile, rather thanto the termind. In paticular
» theA, |, E, F,and X layout or edit desaiptors

 the OPEN, WRITE, ard CLOSE staenents

78 Output: An Intr odudion Chapter 9

Intr odudion

When you have used PRINT * a few timesit becomes appaent tha it is not
always as useful as it might be The data is written out in a way which makes
sone sense but may na be espeidly easyto read. Red numbers are written
out with al thar signficart places, which is very often rather too mary, and it
is often diffi cult to line up the columns for daia which is notionally tabular. It is
possilte to be much more precisein descibing the way in which information is
presented by the program To do this, we use FORMAT statemerts. Through
the useof the FORMAT, we can speify how many columns a hunbe should
take up, and, where appropriate, where a decimal point should lie. The FOR
MAT statement has a labd associated with it; through this labd, the PRINT
staement assodates the data to be written with the form in which to write it.
For example—

PRINT 100,1, XVALUE(l), YVALUE(l)
100 FORMAT(1X,I3,2X,F7.4,2X,F6.4)

The labd 100 which follows the PRINT statemert takes the place of the aser
isk we have been using up to now, ard links the PRINT with the FORMAT
staement. Although the FORMAT follows the PRINT in this example, this is
not obligaory. However it is remommenda that these siatements are adways
kept togethe becausewhen errors ocaur (which they inevitably do!) it will save
you time and effort locating the possble source of the error.

The next thing to consicer is the FORMAT siatement itsdf, and its contents,
i.e. the bits in bradets. The ‘X’ is usedfor gereraing spaes in the output, the
‘I is use whenyou want to print out an integer, and the ‘F’ is used when you
want to print out real numbes.

Integers, | format

Intege forma is reasonably straghtforward, ard offers clues for formats usel
in desciibing other numbers. 13 is an integer taking three columns. The number
is right justified, a bit of jargon mearing tha it is written as far to theright asit
will go, sothatthere are no trailing or following blanks

423
-22
9

are dl rightjustified integers (in 13). Note tha the minussign couns as pat of
the nunber, ard takes up oneof the threecdumnswe hawe speified here. The
only problem with right justffication is tha, when you try to write something
which looks usdul, sut as

THERE ARE 3 IMAGES AVAILABLE FOR PROCESSING

Chapter 9 Output: An Intr odudion 79

the integer pat must be asdgnel a fixed size. In the alove exanple, we might
have given the field 12 to the numbe of images. This is fine when there are O
to 9 images,but whenthere are morethan 9, the message might read:—

THERE ARE12 IMAGES AVAILABLE FOR PROCESSING

which does not look very tidy, ard is more diffi cult to read Another dterndive
is to give tha a very large fidd, say 110. But this would look extremely dis-
jointed:—

THERE ARE 3 IMAGES AVAILABLE FOR PROCESSING

The ddinition of aninteger format is therefore the letter |, followed by a post
tive integer nunbe, eg.

11
110
I3
16
112

Reals, F format

The F format can be seen as an extersion of the integer format. But here we
have to ded with the dedmd point. The form of the F forma spedfies where
the decima point will occur, and how mary digits follow it. Thus,F74 means
that there are 4 digits after the paint, in a total field width of 7 digits. Since the
decima paint is aso written out, there may be up to 2 digits before the decimal
point. As in the caseof the integer, any minus sign is pat of the number, ard
would take up onecdumn. Thus, the forma F74 may be usedfor numbers in
the range

-9.99%® to 99.9999

Letuslook at the lastexample more closdy. When a nurmber is written out, it
is rondd; tha is to say, if we write out 99.9999 in an F74 forma, the
program will try to write out 10000@! Thisis bad news, sincewe have nat left
enoudh room for all thosedigits before the decimal point Wha hgppers? As-
terisks will be printed. In the example above a nunmbe out of range of the
format’s capabilitieswould be printed as:—

*kkkkkk

Wha woud a format of F70 dg? Again, seven columns have been set aside to
acoommodae the nunbe and its decimal point, but this time no digits follow
the paint:—

99.
-21375.

80 Output: An Intr odudion Chapter 9

are examples of nunbers written in this format. With an F format, there is no
way of geting rid of thedecimal point.

The numbers making up the pats of the desciliptors mustal be pasitive inte-
ges. The ddinition of a real format is therefore F followed by two integer
numbes, s@paated by a decima point. The first integer must exceed the sec-
ond ard the seond must be greater than or equal to zero. The following are
vaid examples:—

F4.0
F6.2
F12.2
F16.8

buttheseare notvalid:—

F4.4
F6.8
F-3.0
F6
F.2

Reals, E format

The exponatial or sdentific notaton is usdul in cases where we needto pro-
vide aforma which may encompass a wide rarge of values. If likely resuts lie
in avery wide rarge we can ensue that the most significant pat is given It is
possilbe to give a very large F format, but aterndively, the E format may be
usel. This takes a form sud as

E10.4

which looks sonething like the F, and may beinterpreted in a similar way. The
10 gives the totd width of the number to be printed out, tha is the nunbe of
columns it will take. The nunbe after the decima point indicates the number
of posiions to be written after the decima point; since al exponent format
nunmbers are written so tha the number is baween 0.1 and 0.9999.., with the
exporert taking care of scale shifts, this implies that the first four significant
digits are to be printed out

Taking a concrete exanple, 1000 may be written as 10**3, or as 0.1 * 10**4.
This gives us the two pats; 0.1 gives the significant digits (in this case only
onesignficart digit), while the 10**4 givesthe exponent, namely 4 or +4.1n a
form that looks more like Fortran, this would be written .1E+04 where the
E+04 means 10**4.

There is a minimum size for an exponantial format. Because of all the extra bits
and pieces it requires (the decima paint, the sign of the ertire number, the sign
of the exporen, the magnitude of the exponet and the E), the width of the

Chapter 9 Output: An Intr odudion 81

nunber, lessthe numbe of significant places shaild not be less than 6. In the
example given above, E104 meets this regurement. When the exponent is in
the range zeo to 99, the E will be printed as pat of the nunber; when the
exporert is greater, the E is dropped, and its place is taken by a larger vdue;
howerer, the sign of the exponent is dways given, whethe it is positive or
negdive. The sign of the whde numbe will usudly only be given whenit is
negdive. This means tha, if the numbers are aways posiive, the rule of six
given above can be modified to a rule of five. It is sder to alow six places
ove, sincg, if the formatis insuficiert, all you will ge are aserisks.

The most common mistake with an E format is to make the edit descriptor too
smdl, sotha there is insuffi cient room for all the padding to be printed. For
mats like E8 4 justdorit work (on output anyway). The following are valid E
formats on output:—

E9.3

E11.2
E18.7
E10.4

but the following would not be acceptalde as output formats, for a variety of
reasons

E11.7
E6.3
E4.0
E10
E7.3

Thefirst example in this chgpter could be rewritten to useE format as:=-

PRINT 100,1,XVALUE(I),YVALUE())
100 FORMAT(1X,I3,E10.4,3X,E10.4)

This would be of usewhen we are unsureaboutthe exact rarge of the nunbes
to be printed.

Spacs

Thereis a shorhand way of expressng spaces (or blarks) in your output — the
X descriptor, eg.

PRINT 100, ALPHA,BETA
100 FORMAT(1X,F10.4,10X,F10.3)

The 10X is read rathe like ary of the othe format elements — logicdly it
shoutl have been X10, to correspand to 110 or F104, but tha would be allow-
ing intuition to run away with you. Clealy the X3J3 committee felt it important
that Fortran should have inconsktendes, justlike a naturd larguage

82 Output: An Intr odudion Chapter 9

There are othe ways of achieving the same thing — having a large spae de
limited by apostophes,or by maripulating character variables.Wha you useis
your choice. Remembe tha theseblanks are in addition to any generated asa
result of the leading blanks on numbers (if ary are preser). If you wish to
leave a single spae you muststill precede the X by a number (in this case, 1);
simply writing X is illegd. The generd form is therefore; positve intege fol-
lowedby X.

Alphanumeric or charader format, A

This is pethgps the simplest output of al. Since you will already have declared
the lergth of a character variale in your declarations:

CHARACTER*10 B

when you come to write out B, the length is known — thus you need only
speeify tha a character sting is to be output—

PRINT 100,B
100 FORMAT(A)

If you feel you need a little extra control, you can append an integer value to
the A, like A10 (A9 or Al) ard soon. If you do this, only the first 10 (9 or 1)
chaacters are written out the remande are ignored. Do note tha 10A1 ard
A10 are nat the same thing. 10A1 would be usedto print out thefirst character
of ten character variales, while A10 would write out the first ten characters of
a single charader variable. The genga form is therefore just A, but if more
control is required this may be followed by a positive integer.

Within a FORMAT statement you may aso write out arything within apostre
phes. Thesestrings of charaders will be written out with no madification; e.g.

PRINT 100,A
100 FORMAT(THE ANSWER 1S’,F10.4)

will bewritten out as sonething like=—
THE ANSWER IS 12.3457

A patial progran segnent to output a 3 column table with an informative
heading could be=-

PRINT * NUMBER : X READING : Y READING’

DO 5 I=1,100
PRINT 100, XVALUE(I),YVALUE())
100 FORMAT(1X,13,3X,E10.4,3X,E10.4)

5 CONTINUE

Chapter 9 Output: An Intr odudion 83

Common mistakes

It mustbe stresse tha an integer can only be printed out with an | format, ard
ared with an F (or E) format. You cannot mix intege and F, or real and I. If
you do, unpralictable resuls will follow.

There are (at least) two other sors of errors you might make on writing out a
value. You may try to write out something which has never actually been as-
sigred a value this is termed an inddinite value You may find tha the letter |
is written out In passim, note that many loaders ard link editorswill presé all
vauesto zero — i.e. unsé (inddinite) valuesare actually se to zero. On better
systens there is gengdly sone way of turning this facility off, sotha unde
finad is redlly indefinite. More often than ndt, indefinite valuesare the result of
mis-typing, rather than never setting vaues. It is not uncommon to type O for
0, or 1 for either | or I. The other likely error is to try to print out a value
grester than tha which the machine can cdcuate — out of range values. Sone
madines will print out sud vaues asR; some mechines will actually print out
somrething which looks right, and such owerflow and undeflow conditions can
go umoticed. Be wary.

OPEN (and CLOSE)

Oneof the paticulaly powerful featuresof Fortran is the way it allows you to
maripulate files. Up to now, most of the discission has centred on reading
from and writing to thetermind. It is possible to real and write to one or more
files. This is adieved using the OPEN, WRITE, READ and CLOSE st
merts. We will consider reading from files in a later chagter, and conaentrate
onwriting in this chapter.

The OPEN statement
This staement sds up afile for either reading or writing. A typica form is:—
OPEN (UNIT=1,FILE="DATA")

Thefile will be known to the opeating systen as DATA (or will have DATA
as thefirst pat of its name), ard can be written to by usingthe UNIT nunber.
This staement shoud come before you first read from or write to the file
DATA.

It is not passible to write to the file DATA directly; it must be referenced
throudh its unit number. Within the Fortran program you write to this fil e usirg
astaementlike

WRITE(UNIT=1,FMT=100) XVAL,YVAL
or

WRITE(1,100) XVAL,YVAL

84 Output: An Intr odudion Chapter 9

These two staements are equivalent. Besdes opening afile, we redly oughtto
CLOSE it when we have finishal writing to it:

CLOSE(UNIT=1)

In fact, on mary systems it is not obligaory to OPEN and CLOSE al youwr
files. Almast certainly, the termind will not require this, since INPUT ard
OUTPUT units will be there by default. At the erd of the job, the sysem will
CLOSE dl you files. Neverthdess, explicit OPEN ard CLOSE canrot hut,
and the added clarity gererally assistsin undestandng the progam.

Thefollowing program segment contains all of the abovestaements.

PROGRAM REDO

OPEN (UNIT=1,FILE='DATA")

DO 100 1=1,100
READ (UNIT=1,FMT=200) X(I)
200 FORMAT(E10.3)
SUM = SUM + X(I)
100 CONTINUE

6LOSE(1)

END
Writing
PRINT is dways directed to the file OUTPUT,; in the caseof interactive work-
ing, this is thetermina. This is nat a very flexible arrangerment. WRITE alows

us to direct output to ary file, including OUTPUT. The basic form of the
WRITE is

WRITE(6,100) X,Y,Z
or
WRITE(UNIT=6,FMT=100) X,Y,Z

The latter form is more explicit, but the former is probably the onemostwidey
usal. We have anexanple here of theuseof postiondly dependert parameters
in the first case and equaed keywords in the second. With the exceptionsof the
PRINT staement and the READ * form of the READ, al of the input/output
staements dlow the unit number and the format lakels to be speified eithe by
an equaed keyword (or speifier), or in a postiondly dependert form. If you
usethe explicit UNIT= and FMT= it does not mater what orde the elemerts
are placed in, but if you omit these keywords, the unit numbe must comefirst,

Chapter 9 Output: An Intr odudion 85

followed by the forma labd. A list of al the possible keywords is given in
Chater 18.

UNIT=6 mears tha the output will be writtento the file given the unit number
6. In the next chaper we will cover the way in which you may assodate file
names and unit numbers, but, for the moment, we will assume tha the default
is beng usal. The name of thefile, as defined by the systen, will depend on
the paticular system you use; a likely name is someahing like DATAOQG,
TAPESG or FILEOQD6. Oneeasy way to find out (apat from asking soneong,
is to create such a file from a progam, and then look a the names of your files
after the program hasfinishal. A great many of compuing's minor complexi-
ties can be claiified by simple expeimenrtation.

FMT=100 simply givesthe lakel of the formatto be usel.
The overworked astaisk may beusal, either for theuntit, or for theforma:—
UNIT=* will writeto OUTPUT (thetermind), and

FMT=* will produce output controlled by thelist of vaiiables,
often cdled list directed outpLi.

Thefollowing three staements are therefore equivalert:—

WRITE(UNIT=*FMT=*) X,Y,Z
WRITE(**) X,Y,Z
PRINT*X,Y,Z

There are other controls possilbe on the WRITE, which will be elaborated later.

Summary

* You have bee introduced in this chapter to the use of format or layout
desciiptorswhich will allow greater control over output.

» The main features are the | format for integer variales, the E and F formats
for red numbes, and the A format for charaders. In adlition the X, which
allowsinseation of spaes, has been introducd.

» Output can bedirected to files aswell as to the terminal, through the WRITE
staement.

* The WRITE, togeher with the OPEN and CLOSE statemerts, also introduwces
the class of Fortran statemerts which use equated keywords, as well as post
tiondly dependent parameters.

Problems

1. Write aprogam to produce the following kind of conversion takde:—

86 Output: An Intr odudion Chapter 9

CELSIUS TEMPERATURE FAHRENHEIT
-73.3 -100 —148.0
€tc.

The centre column of the table shoud stat at =100 and go up to +10Q UseF
forma to print out the values of CELSIUS and FAHRENHEIT, whilst the cen
tral cdumn shoud usel format.

Falrenhet temperature = (Cdsius/5)* 9 +32
Cdsius tenpeature= 5 * (Fahrerhat—32)9

2. Write a litres and pints conversion progran to produce a similar kind of
output to the above. Start at 0, and make the centrd colunn go up to 50. One
pint is 0.568 litres.

3. Information on car fud consunption is usudly given in miles pe gdlonin
Britain and the US, and in litres pe 100 km in Europe Justto add an extra
problem US gdlonsare 0.8 Imperia gdlons.Prepae atable which alows con
version from ethe US or Impeial fud consunption figures to the metric
equivalent. Usethe PARAMETER staenent where appropriate.

1 Impeial gallon = 454596 litres
1 mile = 1.60934kilometres.

4. Modify any of the above to write to a file rather then the terminal. What
changes are requiredto prodwce a genera output which will be suitable for both
the termind and a line printer? Is this degreeof genaaity worthwhile?

5. To demonstate your familiarity with formas, reformat questions1, 2 or 3
to use E formets, rather thanF (or vice versa)

10

Output: An Extension

Beyord thelast visible dog

Rus=ll Hoban, ‘ The Mouseand His Child’
Aims

The aims of this chepter are to extend theideasintrodued concerning the pro-
dudion of nest output, and to provide an introdwtion to the power ard
capablity of the layout or edt desciptors. In paticuar:—

* repested output, and implied DO loops

» formating the output for aline-printer

88 Output: An Extension Chapter 10

Repetition

Often we nedal to print more than one numbe on a line and want to usethe
sane layout desciiptor. Corside the following:—

PRINT 100,A,B,C,D

If each nunmbea can be written with the same layout desaiptor, we can albrevi-
ate the FORMAT statemert to take accountof the paterni—

100 FORMAT(1X,4F8.2)
is equivaent to—
100 FORMAT(1X,F8.2,F8.2,F8.2,F8.2)

as you might anticipate. If the patem is mare complex, we can extend this
appraac—

PRINT 100,1,AJ,B.K,C
100 FORMAT(1X,3(I3,F8.2))

Bracketing the desciption ensure tha we repeat the whde ertity:—
100 FORMAT(1X,3(I3,F8.2))

is equivaent to—

100 FORMAT(1X,I3,F8.2, 13,F8.2, 13,F8.2)

Repdition with bradkets can be rathe more conplex. In orde to give sone
ovaview of formatted Fortran output, it is helpful to delve a little into the
history of the languaye Many of the attributes of Fortran can be traced back to
the days of single use mainframes (with often a fradion of the powe of mary
contenmporary micro-computers and work-staions). These would genedly take
input from punched cards (the tradtional 80-column Holleiith card), and would
generate oufput on a line printer. In this sort of environmen, the individual
purched card had a significance which lines in a file do nat have today. Each
card could be seen as a single entity — a physida reoord unit. The record was
sea as an element of subdvision within a file. Even then, there was sone
confusion between the nation of phystcd records and files spit into logically
distinct sub-units, since these sulbunits might also be termed records. The pre-
sent Fortran standad merely says tha arecord doesna necessarily correspord
to a physical entity, although a purched card is usually consdered to be a
record. This leaves us sitting at our terminas in a benusel state, especialy
sine we may have no idea wha a punded cad looks like (anided stae of
affairs!)

It is impaortant to have some notion of a reard, sinee most of the formal defini-
tions dedling with output (and inpuf) are couched in temms of recards. Every

Chapter 10 Output: An Extension 89

time an input or output staenent is executed your nomind position in thefile
changes. If we think in terms of individual recards (which may be cads), the
notions of current, preceding and next recmrd seem fairly straightforward. The
current record is simply the one we have just read or written, and the other
ddfinitionsfollow nauraly.

The situaton becomeslessclear when we redisetha a singe output statement
may gererate many lines of output

WRITE(UNIT=6,FMT=101) AB,C
101 FORMAT(1X,F10.4)

writes out three s@arate lines. Lodking at the output aloneg there is no way to
distinguish this from the output gererated by:—

WRITE(UNIT=6,FMT=101) A

WRITE(UNIT=6,FMT=101) B

WRITE(UNIT=6,FMT=101) C
101 FORMAT(1X,F10.4)

In the latter case we would probably be hgppy to conside each line a record,
athoudh in the previous example we might swither beween considering dl
three lines (genaated by a single statemert) a single record or three records.
Corsider thefirst of these two examples more closdy; each time the format is
exhaustal — tha is to say each time we run out of format desaiption, we stat
agan on a new line (a new record). A new recard is begun as each F104 is
begun The corred interpretation is therefore that threerecords have been writ-
ten.

The same sortof thing happensin more complex FORMAT statemerts:—

WRITE(UNIT=6,FMT=105) X,I,Y
105 FORMAT(1X,F8.4,13,(F8.4))

would write out a single record containing a real, an integer ard a real. Using
the saneformat statement with WRITE (UNIT=6, FMT=105) X,I,Y,Z would
write out two records. The first contaning the values of X, | and Y, theseond
containing only Z. If there were still more values

WRITE(UNIT=6,FMT=105) X,I,Y,Z,A
would print out three records. The group in brackets — the (F84) — is re-
peated untl we run out of iterrs.
Some more examples

Since it is the last open bracket which degemines the position a which the
format is repeded simply writing=—

90 Output: An Extension Chapter 10

WRITE(UNIT=6,FMT=100) A,,B,C,J
100 FORMAT(1X,F8.4,13,F8.2)

would imply tha A, | ard B would be written on ore line, then, returning to the
last open brackets, (in this casethe only open brackets), a new record (or ling)
is begunto write out C and J. A statement like—

100 FORMAT(1X,(F8.4),13,F8.2)

would return to the (F84) group, and then continueto the 13 and F82 before
repesting acain (if necessay). The same thing heppens if the (F84) had no
brackets arourd it. On the other hand:—

100 FORMAT(1X,(F8.4),13,(F8.2))

contains supeafluous brackets arourd the F84, since the repeat staement will
never retum to tha group. Are you corfusel yet? This seems all very esotric,
and really, we have orly hinted at the complexity which is possibé. It is sd-
dom that you have to creste complex FORMAT statemerts, ard clarity is far
moreimportant than brevity.

When paterned or repeated output is usel, we may want to stopwhen there are
no more numbe's to write out. Take the following exanple—

WRITE(UNIT=1,FMT=100) A,B,C,D
100 FORMAT(1X,4(F6.1,)))

This will give output which lookslike:—
374, 294, 142, 9.1,

The lastcomma shoutl not be there. We can suppressthese urnwarted elemerts
by using the colon=

100 FORMAT(1X,4(F6.1:",))
which would then give us-—
374, 294, 14.2, -9.1

Since we run out of data at the fourth item, D, the output following is not
writtenout. It is asmall point, but it does look a lot tidier. There are other ways
of achieving the same thing.

This hdps to illustrate arother point, namely tha you may have formats which
are more extersive than thelists which reference them:—

WRITE(UNIT=1,FMT=100) A,B,C
WRITE(UNIT=1,FMT=100) X,Y
100 FORMAT(1X,6F8.2)

Chapter 10 Output: An Extension 91

Both WRITE staements usethe format provided, althoughthey write out dif-
ferent amourts of daa, ard ndthe usesup the whole forma.
Implied DO loops

In reading and writing it is possible to use more compad ways of indicatng
that an array is bang referenced since it is often rather tedious to dedare each
elemert whichis invdved, e.g.

WRITE(UNIT=6,FMT=100)Y(1),Y(2),Y(3),Y(4)
100 FORMAT(1X,F8.4)

Clealy we coud improvethis slightly by making it into a loop=

DO 11=1,4
WRITE(UNIT=6,FMT=100) Y(I)
100 FORMAT(1X,F8.4)
1 CONTINUE

and equdly we can simplify this to:—

WRITE(UNIT=6,FMT=100)(Y(l),I=1,4)
100 FORMAT(1X,F8.4)

where the DO loop is subsured into the expression(the syrtax is justthe sane
as for the courter pat of a DO loop, with the sane rulesfor starting, erding
and incrementing). An aternaive, and yet morecompad formis:—

DIMENSION Y(4)

WRITE(UNIT=6,FMT=100)Y
100 FORMAT(1X,F8.4)

In al these cases, the output would be the sane — four nunbers printed out on
semat lines. The FORMAT statement is controlling this layout Charging the
format to—

100 FORMAT(1X,4F8.4)

would changethe layout in three out of the four casesoutlined. Which three?
Even two (or more) dimensiand arrays can bewritten out or rea in by implied
loops.

DIMENSION Y(10,10)
NROWS=6
NCOLS=7
DO 1 J=1,NROWS
WRITE(UNIT=6,FMT=100)(Y(l,J),I=1,NCOLS)
1 CONTINUE

92 Output: An Extension Chapter 10

100 FORMAT(1X,10F10.4)
may be written:—
WRITE(UNIT=6,FMT=100)((Y(1,J),I=1,NCOLS),J=1,NROWS)
or even asi—
WRITE(UNIT=6,FMT=100) Y

There are two paints to note with this last example. Firstly, the ertire conterts
of the array will be writteny there is no smpe for fine contol. Secondly, the
order in which the aray elenments are written may be a suprise. The orde is
that of the first subscipt varying 1 to 10 (the aray bound) with the seond
subscipt as 1, then 1 to 10 with the seond subscipt as 2 and so on; the
seqience is

Y(1,1) Y(2,1) Y(@3,1) Y(10,1)
Y(1,2) Y(2,2) Y(3,2) Y(10,2)
Y(1,10) Y(2,10) Y(10,10)

Anothe feature to note is tha we can geneate values from within a WRITE
staement:—

WRITE(UNIT=6,FMT=101)(1,1=0,9)
101 FORMAT(1X,1013)

would produce alinelike—

0123456789

Formatting for a line-printer

Thee is one extersion to format spesificaions which is relevant to line-print-
ers. Fotran ddines four speial characters which have a paticular effect on
standad line-printers. They have an effect when they occur in thefirst character
postion of aline This mears tha a line{printer which is not unde your imme-
diate control can be useal to prodiwce nest output, by sending a file to be printed
on it. This has a variety of names induding spooing, queaudng and routing
depending on the system. You shoud ched with your local sysem for the
exact mechanism to achiewe this.

The spesial characters are +, 0, 1 and blank. To be used, they must be the first
character of the output in each line — asif they were to be printed in column 1.
In fad, a standard line printer never prints a character tha occursin column 1
a all.

Chapter 10 Output: An Extension 93

Whenever a WRITE statement is begun the printer advances to a new record;
i.e. anew lineis begun bdore any data is transfared. If the first character is a
speial charader, then this will be interpraed by the line-printer. If the first
character to beprintedis a blark, the printer continues printing on thatline The
first character is alsoknown as the carriagecontrol charader.

The blark is a do nothing special contol. It signifies tha the line is to be
printedasit is.

The zero indicates tha you wish to leare an extra ling this is often usefil in
spaing out results to make the output morereadable.

The 1 makesthe output skip down to the top of the next page This is clearly
usdul for separating logicaly disinct churks of output. If you obiain a line
printer listing of your compiled program, each segment will start at the top of a
new page

The plus is a no advance or owverprint character. It suppesss the effect of the
line advance which a WRITE generates. No new lineis begun and the previous
line is over-printed with the new. Overprinting can be uselil espeially when
you wish to print out grey scale maps but its useis rathe restricted. In particu-
lar, it can bea dargerouscontol chaacter. If you have a format stating with a
plusin aloop, you can m&e the printer overprint agan and agan and agan
...... and agan ard again, untl it has hanmered itsef into a pulp. Thisis nota
god idea.

Similarly, accidental use of the 1 as a control charader in a loop will give you
lots of blank pages.It is just a bit embarassingto be preseated with a six inch
stack of paper which is (amost) blank, becauseyou had a 1 repestedly in col-
umn 1.

Medanics of carriage control

The following are dl quite reasonable ways of gererating the blank in column
1-

WRITE(UNIT=6,FMT=100)A
100 FORMAT(',F10.4)

or

WRITE(UNIT=6,FMT=100)A
100 FORMAT(1X,F10.4)

or

WRITE(UNIT=6,FMT=100)A
100 FORMAT(THE ANSWER IS ",F10.4)

Note, however, that

94 Output: An Extension Chapter 10

WRITE(UNIT=6,FMT=100)A
100 FORMAT(F8.4)

could resultin prodems. If A contaned the value 1002934, theresultonaline
printer would be

00.2934

printed a thetop of a new page The 1 is takenascarriage control, and the rest
of theline then printed.

Accidentally printing zerosin column 1 is alittle moredifficult, but—

WRITE(UNIT=6,FMT=100)|
100 FORMAT(I1)

might just doit. Don't.

Remenbe tha this only applies to line printer output, and not to the termind.
Since Fortran only ddines 4 chaacters as cariage contol, you will find that
anything else in column 1 will give unpredictable results. On somne sysens, a
fair numbe of adternaives may be defined by the installation, and they may do
sonething usdul. On other systens, they may do somnrething, but they may also
fail to print therest of theline. This canbe very pemplexing. Beware.

Gengaating a new line, on both line-printers and terminals.

There are severad ways of generating new lines, other than with a 0 in column
one of your line printer ouput A more gened appraad, which works on
terminds and aso line printers, is through the obliqueor slash,/. Each timethis
is encounered in a FORMAT statement, anew lineis begun.

PRINT 101,A,B
101 FORMAT(1X,F10.4/1X,F10.4)

would give output like:—

100.2317
-4.0021

This is the sane as (F10.4) would have given but clearly this opers up lots of
possililities for formating output more tidily:—

PRINT 102,NVAL,XMAX,XMIN
102 FORMAT(NUMBER OF VALUES READ IN WAS: 110/
1 " MAXIMUM VALUE IS: ’,F10.4/
2 " MINIMUM VALUE IS: ",F10.4)

which may be easie to read than usirg only oneling and is certainly more
compect to write than usingthree sepaate print statements. It is not necessay

Chapter 10 Output: An Extension 95

to se@rmat / by commas, althowh if you do nathing catastrophic will hgppen.
In this example we have put the elenents of the format on three lines, usirg the
continuaton charaderin column 6.

Any statement may be extended onto a sulsequert line by placing a character
(with the exception of a zero) in cdumn 6. The main reasonfor doing this here
is tha it is often difficult to guesswhen you have typedto column 72 It is far
easer to break pat of the format and restart with a continuaion line. Errors in
formds are often very tricky to locate, and ary attempt to bring a little order
will hdp.

You may aso begn a format desciiption with a/, in order to generate an extra
line or evengererat lots of lineswith lots of sleshes; eg.

WRITE(UNIT=6,FMT=103)A,B
103 FORMAT(//1X,F10.4,4(/),1X,F10.4)

will leave two lines before printing A, and then will generate 4 new lines before
writing B (i.e. there will bethreelines between A and B — thefourth new line
will contain B). While a slash by itself, or with anather slash,doesna have to
be sepaaed by commas from other groups, a more complex grouping, 4(/),
does have to have commeas and brackets to ddimit it.

Summary

» The FORMAT statemert and its assodated layout or edit desciiptor are pow-
erful, and alow repdition of patems of output (both explicitly and implicitly).

* When output is to be directed to a line-printer, there are four charaders de
fined tha alow reasondle control over the layout Care mustto be taken with
thesecharaders, since it is possble to decimate forestswith little effort.

Problems

1. Modify the temperature conversion programto prodice output suitalde for a
line-printer. Use the local opeating systen commands to send the file to be
printed

2. Repeat for thelitres and pints program
3. Whatfeatures of Fortran reved its evolution from purched card inpuf?

4. Try to creaste a red nunbe greder than the maximum possilbe on you
computer — write it out Try to repedt this for an integer. You may have to
exercise sorme ingerulity.

5. Chek wha a nunbe too lamge for the output forma will be printed as on
your local systen —is it all asterisks?

96 Output: An Extension Chapter 10

6. Write a progam which storeslitres and carresponding pints in arays. You
shoutl now be able to control the output of the table (excluding headngs —
althoudh this could be dore too) in a single WRITE or PRINT staement. If you
dorit like litres and pints, try sorre other convesion (steling to US dollars,
leagues to fathoms, Saots miles to Betelgeusian pfnings). The principle remains
the same

11

Readirng in data

Winnethe-Poohread the two natices very carefully,
first from left to right, and afterwards,
in casehe had misse someofit, from right to left.

A A Milne, Winnethe-Pooh

Aims

The aims of this chgpter are to introdue sone of the idess involved in reading
daainto a progam. In paticular, using the following=—

reading from fixed fields
integers, reds and characters
blarks — nulls or zeros?
READ — extensions
e END=
* ERR=
OPHBN — assodting unit numbers ard fil e nanes
» CLOSE
« REWIND
« BACKSPACE

98 Reading in Data Chapter 11

Fixed fields on input

All the formats desciibed earlier are availale, and agan they are limited to
paticular types. Integers may only be inpu by thel format, reals with F and E,
and character (dpharumeric) with A.

Integers, the | format

Integers are read in with the | edit desciptar. While, on output, integers appear
right justfied, on input they may appear anywhee in the fidld you have ddim-
ited. Blanks (by default) are consicered not to exist, for the purposeof the
value read, althowh they do contribute to the field width. Apart from the digits
0to 9, the only othe charaders which may appea in an integer field are — ard
+.

READ(UNIT=*FMT=100) 1,J,K
100 FORMAT(3I4)

with the following values:—

2 -40+21

would resuk in the values 2, — 40 and 21 being asdgned to I, J and K respes-
tively.

Reals, the F and E formats

Redl numbers may be inputusing ether the E or F format, whethe or notthe E
desciiptor is presert in the field. Again, we ddine a width, and, as with output,
the number of places after the point—

F10.4
E12.3
F6.0

E10.0

However, if the point is aready present in the vaue being inpu, this overides
the ddinitionin theformat. Again, blanks are treated asnull vaues.

READ(UNIT=*FMT=100) A,B,C
100 FORMAT(F10.6,E12.6,F6.0)

with
1234567890 14 4 .

results in A taking the value 12345678, B taking the vadue 140, and C the
vaue 4.

The absaence of theE in the field for B hasno adverseaffed. As agenead rule,
it is best to retain the decimal pant with real numbes, just as a precauion.

Chapter 11 Reading in Data 99

Sonetimes it is diffi cult to line up fields propely, and the first sign of troude
may befinding two decimal points in the onefield, which will gererate an error
messge eg. consider:—

READ(UNIT=*FMT=101) AB,C,X,Y,Z
101 FORMAT(6F5.2)

If thiswas in aloopto readthefollowing vaues:—

2.0 3.0 13.06.1 09 0.2
120 62. 9.4229-3.7

The seond time the READ was used you would get an eror (can you see why
and whee?)

An exponential format nunmber (which may beread in F or E formats) can take
a numbe of different forms. Themost obviousis the explicit form:—

-1.2E4

where all the components of the value are present — the significant digits to
the left of the E, the E itsdf, and the exporert to the right. We can drop amaost
any two of thesethree components, and therefore—

-1.2
-1.2E
-1.2-4
-4

are all valid vaues. Only the first two are interpreted as the sane numerical
vaue, ard just giving the exponent part would be interpreed by the forma as
just giving the significant digits. If the exponent is to be given there must be
sone significant digits aso. It is not even enoughto give the E and assune that
the program will interpretthis as 10 to the powe exponent :—

E-4

is notan acceptable exponential format value athough=
1E-4

would be

There are opportunitiesfor confusion with E formats.

READ(UNIT=*FMT=102) X,Y
102 FORMAT(2E10.3)

with—

10.23 -2

100 Reading in Data Chapter 11

This would be interpreted as X taking the vaue 10.23E-2 and Y taking the
vaue 0.0, while with

102 FORMAT(2F8.3)

X would be 10.23,ard Y would be —2.0.

Althowgh the decimal point may aso be dropped this may gererate corfusion
too. While:—

4E3

45

45E-4

45-4
are dl valid forms, if an E format is usel, a speia conveasion takes place A
formd, like E108, when useal with integral signficart digits (no decimal
point), uses the 8 as a nggative power of 10 saling, e.g.

3267E05
convets to
3267*10**-8*10**5
or
3267*10**3
or
3.267.

Theefore, the interpreaton of, say, 136 read in E forma, woud depend on
the format used—

Value Formet Interpretation

136 E10.0 1360

136 E104 1360*10**—4
or 0.0136

136 E10.10 1360*10**—10
or 0.000M00136

136. any above 1360

Oneimglicdion of all this is tha the format you useto input a variable may
not be suitable to oufput that same variable.

Chapter 11 Reading in Data 101

Blanks, nulls and ze os

You can control how Fortran treats blanks in input through two spedal format
instructions, BN and BZ. BN is a shothand form of blanks becomendul, tha is,
a blank is treaed asif it was not thae a al. BZ is therefore blanks become
ZEeros.

As we hawe dready sea, 1 4 (i.e. the two digits sepaated by a blank) read in
I3 format would be read as 14; similarly, 14 (onefour-bank) is aso 14 when
the BN format is in opeation. All of the blanks are ignored for the purposes of
interpreting the nunbe. They hdp to crede the width of the number, but other-
wise contribute nothing. This is the defaut, which will be in operaton unless
you speify othemwise

The BZ desaiptor turns blanksinto zeros. Thus, 1 4 (oneblank-four) read in I3
format is 104,ard 14 (onefourblank) is 140.

There is one place where we must be very careful with the use of the BZ
forma — when usingexponent format input Conside:—

5.321E+02

read in (BZ,E103) forma. We hawe spedfied a field which is ten characters
wide, therefore the blank in column 10, which follows the E+02, is read as a
zero, making this E+020. This is probaly notwha was required.

Charaders

When chaecters are read in, it is sufficient to usethe A formet, with no explicit
mertion of the size of the character string, since this size (or lergth) is deer
mined in the progran by the CHARACTER declaration. This impliesthat ary
extra charaders woud nat bereadin. You may however readin less:—

CHARACTER*10 LIST

READ(UNIT=5FMT=100)LIST
100 FORMAT(AL)

would read only the first character of the input The remaining 9 characters of
LIST would be sd to blank.

Thenotion of blanks asnulls or zeros has no meaning for characters. The blark
is a legitimate character, and is treaed as meaningfu, completely distinct from
the nation of anull or azero.

Skipping spaesand lines

The X format is aso usdul for input There may be fields in your daa which
you do notwishto read. Theseare easily omitted by the X forma:—

102 Reading in Data Chapter 11

READ(UNIT=5,FMT=100) A,B
100 FORMAT(F10.4,10X,F8.3)

Similarly, you canjump over or ignae entire recards, by using the oblique. Do
note however, tha

READ(UNIT=5,FMT=100) A,B
100 FORMAT(F10.4/F10.4)

would read A from oneline (or record) ard B from the next. To omit a record
beween A ard B, theformat woud need to be—

100 FORMAT(F10.4//F10.4)
Another way to skip ove aremrd is:—

READ(UNIT=5,FMT=100)
100 FORMAT()

with no variable name at all.

Reading

As you have seen dready, reading, or theinput of information, is accomplished
throuch the READ statemert. We have used—

READ *X,Y

for list directed inputfrom the temind, and=—
READ(UNIT=5,FMT=100) X,Y

for formatted inpu aso from the termina. Theseforms may be exparded to
READ(UNIT=*FMT=*) X,Y

or
READ(UNIT=*FMT=100) X,Y

for inpu from the terminal, or to
READ(UNIT=5,FMT=*) X,Y

or
READ(UNIT=5,FMT=100) X,Y

when we wish to asociate the READ staenent with a patticuar unit number
(or format labd, for formatted input). As with the WRITE staenent, theselast
two READ staements may be ablreviatedto

READ(5,%) X,Y

Chapter 11 Reading in Data 103

and

READ(5,100) X,Y

File manipulation agan

The OPEN and CLOSE statements are aso relevant to files which are used as
input, and they may be usal in the sane ways. Besies introdicing the notion
of manpulating lots of files, the OPEN statemert allows you to charge the
default for the treatment of blarks. The default is to treat blanks as null, but the
staement BLANK="ZERQ’ changesthe default to treat blanks aszeros. There
are othe paameters on the OPBN, which are considered elsevhere.

Once you have OPENed afile, you may nat issue arother OPEN for the sane
file until it hasbeen CLOSHI, except in the case of the BLANK= parameter.
You may charge the default back agan with:—

OPEN(UNIT=10,FILE="EXAMPL")
READ(UNIT=10,FMT=100) A,B

OPEN(UNIT=10,FILE="EXAMPL’,BLANK="ZERQO’)
READ(UNIT=10,FMT=100) A,B

This implies tha, within the sane inpu file, you may treat sone rewrds as
blark for nul, and sone as blark for zero. This soundsvery dangeous, ard
would be better doneby manipulating individud formats if it had to be doneat
al.

Giventha you may write a file, you may aso rewind it, in order to get back to
the beaginning. The syrtax is similar to the other commards:—

REWIND(UNIT=1)

This often comes in usdul asa way of providing backing starage, where inter-
medate dda can be stored on file and then usal at a later pat of the
processing

The notion of recordsin Fortran input and output has been introduced. If you
are confident in yowr undestanding of this ambiguaus and nebulous conceqt,
you can badkspae throwh afile, usirg the staement

BACKSPACE(UNIT=1)

which moves bad over a single record on the designaed file. There is no paint
in trying to BACKSPACEor REWIND input, if tha inpu is the termind.

104 Reading in Data Chapter 11

ERR and END

In disaussingsone aspets of input it has been pointed out tha erors may be
mace. Whee sud erors are noticed, in the sense tha something illegd is
being atempted there are two options

* printadiaghostt message ard allow correction of the mistake
* print adiaghostt message ard terminate the progam

The only time that the first makes senseis when you are interacting with a
program at a termind. Sone Fortran implemertations provide corredion fadli-
ties in a case like this, but mostdo nat.

This latter casemay nat be desirable, and you have a mecharism through a
paameter onthe READ staement to trap this.

READ(UNIT=5,FMT=102,ERR=200) X,Y

would allow faulty daato be trapped. The keyword ERR= directs the progran
to labd 200 where somre sortof processingmight ocaur, eg.

NUM=0
1 NUM=NUM+1
READ(UNIT=5,FMT=102,ERR=200) A,B

200 WRITE(UNIT=6,FMT=103) NUM
103 FORMAT(ERROR IN DATA INPUT, AT RECORD ’,14)

While this does nat guaantee carrect values in A and B, like having decimal
points in integer fields, or two decimal pointsin red fields (or before the sign),
you might inadvertently try to read characters in I, F or E formats. Of course,
reading nunmbesin A forma would go by unroticed

Very often we do not know exactly how much data is to bereadin. Unless you
do sonething alout it, reading beyond the end of the daa on a file will gerer
ate an error, a fata error. In sone cases this is probably a goad thing, but
anothe paameer on the READ allows it to be done elecartly.

READ(UNIT=5,FMT=100,END=101) LIST

As with the ERR= parameter, this direds the program to a given labd in the
event of hitting the end of the data input file (in this case unit 5). Both the
END= and ERR=bdong to a special classof staements, thosewhich are proc-
essal on disoveing an error condition. This resticts thar useto paticular
situaions,and does nat necessaily destroy the structure of the program

Chapter 11 Reading in Data 105

Summary

» Values may beread in from the terminal or from anothe file throudh fixed
formas.

* Much of the stucure of inputformat statements is very similar to that of the
output formats. Broadly speking, daa written outin a particuar forma may be
read in by the same format. Howe\er, there is greater flexibility, and quite a
variety of forms can be accepted oninput

* A key distinction to make is the inteprdation of blanks, as eithe nulls or
zers; dternaive interpreations can radicaly dter the strucure of the input
daa

* Fortran alows file names to be assodated with unit numbeas throuch the
OPHN statement. This statement alows control of the interpretation of blank,
athoudh this can aso be donethrouch the BN and BZ formats.

» The READ staement, besides allowing the input to come from a paticular
file, also dlows cheds to be mack on the daa, through the ERR= parameter,
and checks for the end of data condition throughthe END=.

* Files may also be manipulated throughREWIND and BACKSPACE

Problems

1. Write aprogam tha will read in two reals ard oneinteger, using
FORMAT(F7.3,14,F4.1)

and tha, in oneinstance treats blanks as zeros, and in the second treats blanks
as nulls. UsePRINT *, to print the numbers outimmediately after reading them
in. Wha do you notice? Can you think of instanceswhere it is necessay to use
onerather than the othe?

2. Write aprogam to readin and write outarea nunbe usng
FORMAT(F7.2)

Wha is the largest number that you can read in and write out with this format?
What is the largest nggaive nunbe tha you can readin and write out with this
forma? Wha is the snmellestnunber, other than zero, that can be real in ard
writtenout?

3. Rewriite two of the ealier programs tha usel READ,* ard PRINT,* to use
FORMAT statemerts.

4. Write a program to rea thefile created by either the tenperature conversion
program or the litres and pints conveasion progam Make suretha the pro-
grans ignae the line-printer control chaacters, and ary heade and title

106 Reading in Data Chapter 11

information. This kind of problem is very common in progamming (writing a
program to read and possiby maripulate daa created by another progam).

5. Use the OPEN, REWIND, READ and WRITE staements to input a value
(or vaues) as a character string, write this to a file, rewind thefil g, read in the
valuesagain, this time as real variables with blanks treated asnull, then repeat
with blarks as zeros.

6. Denonstrate that input and output formats are not symmeric — i.e. what
gossin doesnot necessaily comeout

7. Can you suggestwhy Fortran treats blarks as null rather than zero?

8. Wha happens a your termind when you enter faulty daa, inapproyriate for
the formats speified? Does the operating systen intercept the daa, or can you
usethe ERR = escgeroute?

12

Making decisions (1)
Themorealternatives, the mare difficult the choice

Abbed’Allainval, Title of comaly
Aims

The aims of this chepter are to introdue—

* sekction bawean various course of adion as pat of the prablem
solution

* the conoepts and stadenents in Fortran needed to suppat the
abowe. In paticular:—

* logica expressims
* logica operators
* ablock of staements

» sewnl blocks of staements

108 Making Decisions (1) Chapter 12

Sdection between courses of adion
In most problens you need to chaose between variouscourses of action eg.
» if overdrawn, thendo not draw money out of the bank

* if Monday, Tuesdy, Wednesdg, Thursday or Friday, then go to
work

« if Saurday, thengo to watch QueensPak Rangas
* if Sinday, then lie in bed for arother two hous

As mast prablems involve sdection betwveentwo or more coursesof action it is
necessay to have the concepts to suppot this in a progamming languege For-
tranhasa variety of seledion mechanisns, sornre of which are introduced

The BLOCK IF statement.
Thefollowing shortexanple illustiates the main ideas:—

. wake up

. check thedae and time
IF (TODAY.EQ.SUNDAY) THEN

. lie in bad for amther two hous

ENDIF

.ge up
. make breakfast

If today is Sundhy then the block of staements beween the IF and the ENDIF
is exeauted. After this blodk hasbeen exeauted the program continues with the
staements after the ENDIF. If today is not Sunday the prog'am continues with
the staements after the ENDIF immediately. This means tha the statemerts
after the ENDIF are exeauted whether or not the expression is true

Thegereral form is:—

IF (Logicd expression) THEN
Block of statemerts

ENDIF

Chapter 12 Making Decisions (1) 109

The logical expresson is an expressiontha will be eithe true or false, hence
its name. Same examples of logica expressiors are given below:—

(ALPHA.GT.10.1)

Testif ALPHA 101
(BALANC.LT.0.0)

Testif overdrawn
((TODAY.EQ.SATDAY).OR.(TODAY.EQ.SUNDAY))

Testif today is Saurday or Sinday
((ACTUAL—CALC).LT.0.000001)

Testif ACTUAL minus CALC less than 0.0000QL

Fortran has the following relaiond opeators:—

Opeétor Meaning

EQ. Equal

.NE. Not equd

.GE Greder than or equd
.LE. Lessthan or equd
LT. Lessthan

.GT. Grederthan

and the following logica opeators:—

Opeétor Meaning
.AND. and
.OR or
.NOT. not

Thefirst six shoud be sef-explanaory. They enable expressiors or varialdes to
be compared and tesed Thelastthree enable the constriction of quite complex
compaisors, invdving mare than onetest; in the example given earlier there
was atestto see whethe today wasSaurday or Sundy.

110 Making Decisions (1) Chapter 12

One spesial case of the IF statemert may be usdul. From time to time there
may only be one staement to execute in aBLOCK IF:—

IF(MONTH.EQ.2)THEN
NDAYS=28
ENDIF

In these circumstances, it is possble to compress the statemerts to a singe
logical if:—

IF(MONTH.EQ.2)NDAYS=28

This has exactly the sane effect. Whichever form you useis a matter of taste—
thoughthe genea form has the advantage of flexibility.

Note tha sone synbols available on thekeyboad e.g.

are not acceptable as a shorthand way of denoting the rdational opeators.

Use of logical expressons and logica variables (something not mentioned so
far) are covered acain in alater chapter on additiond daa types.

The ‘IF expression THEN staements ENDIF is cdled a BLOCK IF corn+
struct. There is a simple extension to this provided by the ELSE statement.
Corsider the following exanple—

IF (BALNCEGE0.0) THEN

. draw money out of the bark

ELSE
. borrow money from afriend
ENDIF

. Buy aroundof drinks

Chapter 12 Making Decisions (1) 111

In this instarce one or othea of the blocks will be executed. Then exeaution
will continuewith the statemerts after the ENDIF statemert (in this casebuy a
round).

Thee is yet another extensionto the BLOCK IF which allows ELSHF st
mert. Constler thefollowing example=-

IF (TODAY.EQ.MONDAY) THEN
ELSI.EIF (TODAY.EQ.TUSDAY) THEN
ELSI.EIF (TODAY.EQ.WEDDAY) THEN
ELSI.EIF (TODAY.EQ.THRDAY) THEN
ELSI.EIF (TODAY.EQ.FRIDAY) THEN
ELSI.EIF (TODAY.EQ.SATDAY) THEN
ELSI.EIF (TODAY.EQ.SUNDAY) THEN

ELSE
there has been an error. The variable TODAY has
taken on an illegal value.

ENDIF

Note tha, assom as oneof thelogica expressonsis trug therestof thetestis
skipped, and execution continues with the statemerts after the ENDIF. This
implies tha a constudion like—

IF(LLT.2)THEN
ELSEIF(LLT.1)THEN

ELSE

ENDIF

is ingppropriate. If | islessthen 2, thelatter condition will never be tesed The
EL SE staement has been used here to aid in trapping errors or exceptions. This
is recommended practice. A very common error in progranming is to assune
that the daa is in certain well-spedfied ranges. The progran then fails when
the daa goes outside this range. It makes no senseto have a day othe than
Monday, Tuesdgy, Wednesday, Thursda, Friday, Saurday or Surday.

112 Making Decisions (1) Chapter 12

Examples

» This program is straightforward, with a simple strudure. The roots of the
qualratic are either red, equd and real, or comgex depending on the magni-
tude of theteem B ** 2 — 4 * A * C. The progam tests for this term beng
greater than and less than zero, it assunes tha the only other caseis equdity to
zero (from the mecharics of a computer, floaing point equdity is rare, but, we
are sde in thisinstance).

PROGRAM QROOTS
REAL A,B,C,TERM,A2,ROOT1,ROOT2

A B AND C ARE THE COEFFICIENTS OF THE TERMS
A*X**2+B*X+C
FIND THE ROOTS OF THE QUADRATIC, ROOT1 AND ROOT2

O0000

PRINT*’ GIVE THE COEFFICIENTS A, B AND C’
READ*AB,C
TERM = B*B — 4.*A*C
A2 = A2,
C IF TERM < 0, ROOTS ARE COMPLEX
C IF TERM = 0, ROOTS ARE EQUAL
C IF TERM > 0, ROOTS ARE REAL AND DIFFERENT
IF(TERM.LT.0.0)THEN
PRINT*’ ROOTS ARE COMPLEX’
ELSEIF(TERM.GT.0.0)THEN
TERM = TERM*0.5
ROOT1 = (-B+TERM)/A2
ROOT2 = (-B-TERM)/A2
PRINT*’ ROOTS ARE ’,ROOT1, AND ',ROOT2
ELSE
ROOT1 = —B/A2
PRINT*’ ROOTS ARE EQUAL, AT ’,ROOT1
ENDIF
END

» This next example is also straightforward. It denonstrates tha, even if the
condtions on the IF siatement are involved the ovedl studure is eay to
deermine The comments and the nanes given to variales should make the
program sdf-explaratry. Note the use of integer division to identify leap
years.

PROGRAM DATE
INTEGER YEAR,N,MONTH,DAY,T
C
C CALCULATES DAY AND MONTH FROM YEAR AND DAY-WITHIN-YEAR
C T IS AN OFFSET TO ACCOUNT FOR LEAP YEARS
C
PRINT*,’ YEAR, FOLLOWED BY DAY WITHIN YEAR’

Chapter 12 Making Decisions (1) 113

READ* YEAR,N
C CHECKING FOR ORDINARY LEAP YEARS
IF(((YEAR/4)*4).EQ.YEAR)THEN
T=1
ELSE
T=0
ENDIF
C CHECKING FOR LEAP YEARS AT CENTURIES
IF (((YEAR/400)*400.EQ.YEAR)
+ .OR.((YEAR/100)*100.EQ.YEAR))THEN
T=T
ELSE
T=0
ENDIF
C ACCOUNTING FOR FEBRUARY
IF(N.GT.(59+T)) THEN
DAY=N+2-T
ELSE
DAY=N
ENDIF
MONTH=(DAY+91)*100/3055
DAY=(DAY+91)-(MONTH*3055)/100
MONTH=MONTH-2
PRINT*’ CALENDAR DATE IS ’,DAY,MONTH,YEAR
END

Summary
 Decisiors are a key pat of problem solving, and of Fortran.

» Decisiors are made on the bask of an IF staement, where sorre condtion is
evaluated as eithe true or false, and then a paticular course of action is fol-
lowed

» The IF constuc can be expanded quite elegantly into the IF-THEN-ELSE
ENDIF type of studure (the Blod If), where the dtemaives are groupel in a
kind of parenthdical strucure.

* Besides the ELSE, arother statement, the ELSHF may be usel.

Problems

The physicd world has many exanples where proegesses require sone threshot
to be overcome before they begin opeation: critical massin nuclear reactions, a
given slope to be exceeded bdore friction is overcome, and so on. Unfortu-
naey, most of thesesotts of calculations become rather complex and not really
appraoriate here. The following prablem trys to restiict therangeof caculation,
whilst illustraing the possibiities of dedsion making.

114 Making Decisions (1) Chapter 12

1. If acubic equaionis expressedas
z3+a222+a12+ao:0
and we let

g=a/3—(2a) 9

and

r = (awap-3a)/6-(spapap)/27
we can deermine the naure of theroofs as follows:

q3 +%> 0; orereal root and a par of complex;
q3 +r? = 0; dl roots red, and at least two equd;
q° + 12 <0; dl roots red;

Incorporde this into a suitade progam, to determine the naure of the roots of
a cubic from suitable input

2. The form of bregking waves on beadhes is a continuum, but for convenience
we commonly reagnise three major types: surgng, plunging ard spilling.
These may be classified empiricaly by reference to the wave period, T (sec-
onas), the bregker wawve hdght, Hp (metres), and the beach slope m. These
three variables are combined into a single paameter, B, where

B = Hp/(gmT?)

g is the gravitationd constant (981 cm sec_z). If B is lessthan.003, the break-
ers are surging; if B is grester than 0.068, they are spiling, and between these
vaues,plunging bregkers are observed

(i) On the east coast of New Zedard, the normal patern of wawesis swdl
waves, with wave hdghts of 1 to 2 meres, and wave peiods of 10 to 15
seonds. During storms, the wave peiod is geneadly shorer, say 6 to 8 sec-
onds, ard thewave heghts higher, 3 to 5 meres. The beach slope may be taken
as abou 0.1. What charges occur in bresker characteristics as a stom builds
up?

(i) Similarly, mary beacheshave a concve profile. The lower beach genedly
has a vely low slope say lessthan 1 degree (m=0.018) but towards the high
tide mark, the slope increases dramaticdly, to say 10 degrees or more
(m=0.18). Wha changes in wave typewill be obseved as thetide comes in?

3. Pesond taxation is usually stucured in the following way:—
no taxation on thefirst mp units of income;

taxation at t1% on the next mz units;
taxation at t2% on the next mz units;

Chapter 12 Making Decisions (1) 115

taxation at t3% on arything above.

For some reason, this is termed progressive taxation. Write a geneaised pro-
gram to deermine ne income after tax dedudions.Write out the grossincome,
the dedudions and the ne income. You will have to make sone redistic esti-
mates of the tax thresholds mj and the taxation levels ti. You could usethis sort
of modd to find out how sersitive revenue from taxaion was in relaton to
cosmeic charges in threshdds and tax rates.

4. The speific hest capacity of water is 2000 J kg™* K™% the spedfic latent
heat of fusion (icevater) is 335 kJ kg_l, and the spedfic latert heat of vapori-
zation (water/stean) is 2500 kJ kg_l. Assune that the speific hea capecity of
ice and steam are identical to that of water. Write a program which will read in
two tempeatures,and will cdcuate the erergy required to raise (or lower) ice
water or steam at the first tempeature, to ice, water or steam at the second.
Take the freezing point of water as 273 K, and its boiling point as 373 K. For
thosehappier with Celsius,0° C is 273 K, while 10(¢ is 373 K. Ore cdorie is
41868 J, and for thetruly atavistic, 1 BTU is 1055J (approximaely).

13

Functions

| can call spirits fromthevastydesp
Why socan |, or socan any man butwill theycome
when you do call for them?

William Shakespeare, ‘King Henry 1V, part 1’
Aims

The aims of this chepter are—
* tointrodwesysten sumlied fundions
* toextendto user definad functions

* to extendto statement funaions

Chapter 13 Functions 117

Intr odudion

Fortran provides a large number of functions, chiefly for common mathemnetical
evaluations. They are usal in a staightforward way. If we take the commaon
trigonometric fundions,sing cosine and tangent, the appropriate vauesmay be
calculated quite simply by

X=SIN(Y)
Z=COSY)
A=TAN(Y)

Thisisin rathe the sane way tha we might saytha X is afundionof Y, or X
is sineY. Note tha theargument, Y, is in radiansnot degrees These fundions

are caled intrinsic fundions.A sdectionis given here:—

Fundion Action Exanple
INT convesion to integer J=INT(X)
REAL conversion to red X=REAL(J)
ABS alsolute value X=ABS(X)
MOD remandeaing I=MOD(K,L)
remande when | dividedby J
MAX maximum value X=MAX(A,B,C,D)
(at least 2 arguments) I=MAX(K, L)
MIN minimum value X=MIN(A,B,CD)
(at least 2 argumments) I=MIN(K, L)
SOQRT square root X=SQRT(Y)
EXP exponatiation Y=EXP(X)
LOG naural logarithm X=LOG(Y)
LOG10 common logaithm X=LOG1QY)
SIN sine X=SIN(Y)
COs casine X=COS(Y)
TAN tangent X=TANC(Y)
ASIN arcshne Y=ASIN(X)
ACOS arccosne Y=ACOS(X)
ATAN arctangent Y=ATAN(X)
ATAN2 arctangent(a/b) Y=ATAN2(A,B)

A completelistis given in Apperdix E.

Note tha sone of these fundions can take eithe real or integer arguments.
These are speia generic type which means tha thetype of the resultis deer-
mined by thetype of thearguments.

118 Functions Chapter 13

You shoud nat usevairiables which have the sane name as the intrinsic func
tions.

There are one or two other key points to nate. Sone of the intrinsic fundions
have multiple arguments, eg. MIN and MAX; these argurments must al be of
the sanetype

You may alsoreplace argumerts for fundionsby expressiors, e.g.
X = LOG(2.0)

or
X = LOG(ABS(Y))

or

X = LOG(ABS(Y)+Z/2.0)

Examples

This exanple uses only onefundion, the MOD (or modulus). It is useal seweral
times, helping to emphasise the usdulness of a conveniert, easily referenced
function. The program calculates the date of Easter for a given yea. It is de
rived from an algorithm by Knuth, who also gives a fuller disaissionof its
importance of its agorithm. He condudes tha the cdcuation of Easte was a
key factor in keeping aiithmetic alive duiing the Middle Ages in Europe Note
that degeminaion of the Eastern churches' Easer requires a different algo-
rithm,

PROGRAM EASTER
INTEGER YEAR,METCYC,CENTRY,ERROR1,ERROR2,DAY
INTEGER EPACT,LUNA
C A PROGRAM TO CALCULATE THE DATE OF EASTER
PRINT *’ INPUT THE YEAR FOR WHICH EASTER’
PRINT *’ IS TO BE CALCULATED’
PRINT *’ ENTER THE WHOLE YEAR, E.G. 1978
READ *YEAR
C CALCULATING THE YEAR IN THE 19 YEAR METONIC CYCLE-METCYC
METCYC = MOD(YEAR,19)+1
IF(YEAR.LE.1582)THEN
DAY = (5*YEAR)/4
EPACT = MOD(11*METCYC-4,30)+1
ELSE
C CALCULATING THE CENTURY-CENTRY
CENTRY = (YEAR/100)+1
C ACCOUNTING FOR ARITHMETIC INACCURACIES
C IGNORES LEAP YEARS ETC.
ERROR1 = (3*CENTRY/4)-12
ERROR2 = ((8*CENTRY+5)/25)-5

Chapter 13 Functions 119

C LOCATING SUNDAY
DAY = (5*YEAR/4)-ERROR1-10
C LOCATING THE EPACT(FULL MOON)
EPACT = MOD(11*METCYC+20+ERROR2-ERRORL,30)
IF(EPACT.LT.0)EPACT=30+EPACT
IF((EPACT.EQ.25.AND.METCYC.GT.11).0R.EPACT.EQ.24)THEN
EPACT=EPACT+1
ENDIF
ENDIF
C FINDING THE FULL MOON
LUNA=44-EPACT
IF(LUNA.LT.21)THEN
LUNA=LUNA+30
ENDIF
C LOCATING EASTER SUNDAY
LUNA=LUNA+7-(MOD(DAY+LUNA,7))
C LOCATING THE CORRECT MONTH
IF(LUNA.GT.31)THEN
LUNA = LUNA — 31
PRINT *’ FOR THE YEAR ", YEAR,
PRINT *’ EASTER FALLS ON APRIL ’,LUNA
ELSE
PRINT *’ FOR THE YEAR ’",YEAR,
PRINT *’ EASTER FALLS ON MARCH ’,LUNA
END

As wdl as noting the useof the MOD geretic fundion in this progam, it is
aso worth nating the strudure of the dedsions.They are nestel, rathe like the
nested DO loopswe met ealier. Note, however, that each IF blodk requires its
own ENDIF.

Reasonsfor functions
Wha kindsof reasoning lead to the adoption of fundionsin prograns?

Duplication Very often we wish to do the same sort of thing repeatedly in a
program. For example, we may wish to solve set of simultaneous equdions,
add matrices together, or find the minimum and maximum vaue in a set of
daa Clearly, every time we wish to do this, we could indude the appropriate
bits of program but this may involve usin lots of rathe boring duplication of
instructions. Not only do we hawe to includeit lots of times, but the poor com-
piler has to examine it lots of times too. You shoutin’t feel too bad albout the
compiler, butit does seem ludicrous to risk mé&king errors in the duplicaion —
after all, any staement labds will have to be charged, and it is genedly when
sud changes are made that errors are introduced. So one reasonfor adoping
functions, or sub- programsis to awid needless, and paentially dargerous,
dugicdion. This aso has the effect of saving space.

120 Functions Chapter 13

Modularity In bresking logicdly sdf-contained and thus distind modules or
segnents (solving sets of simultaneousequaions,etc.), we are imposinga nau-
ra structure on the prodem. We have aready discussed prodem sohing, ard
onekey eenmentis to reduce an appaently unmanagegble problemto a sefes of
marageale churks. As long as we can actually spesify the steps, we have a
chance to solve the oveadl problem. Sub-programs assistin adhieving modular-
ity, and can give each chunk a sgaate identity. Thusit is essie to visualise
the problemand its solution.

Extension We need fundionsin orde to exterd the rarge of operaions avail-
able in Fortran. For exanple, Fortran 77 has no operabrs for vedors ard
matices — to do simple arithmetic on sud structures we have to write a func-
tion.

Brevity There is perhgps one other guideline to offer before consideing sub
programs in moreddail. The shoter a unit is, themare likely you are to se= the
errors, either before you actually run the program, or later, whenyou are trying
to undestard why it failed. Like all rules, this is not infallible, but it is bestnot
to make the sub-pograns too elatorae.

Supplying your own functions

There are two stages herg, firstly to define the fundion and secondl to refer
ence or use it. Thefollowing defines a fundion=

REAL FUNCTION FUN(X,Y,Z)
REAL X,Y,Z

FUN = X*Y**Z

END

where X isalocd variade, FUN is fundion name, which obeys all the conven
tionsregarding type ard length, ard A,B,C are arguments. To use this fundion,
you refererceor cal it with aform like—

V1 = FUN(A,B,C)
A complete program induding this fundionis given bdow.

PROGRAM TRIAL
REAL A,B,C\V1

V1 = FUN(A,B,C)
END
REAL FUNCTION FUN(X,Y,Z)

FUN = X*Y**Z
END

Chapter 13 Functions

121

The fundion has two importart feature which distinguishes it from the PRO-
GRAM segnent—

* thetype of the fundion — in this casereal. Fundions retum val-

ues, and thevalues retumed have to be of a speific type.

* the argumeats — in this case X,Y,Z. Note that, in the cdl, we
have three agunments, and so too in the FUNCTION staement,
and tha the arguments are matched in order. There must be a
oneto-one correspordence between the argunments, induding their

typeand whethe they are arrays, vectors, or simple variables.

Fundions are treated by the compiler as completely separate ertities. They will
occur before or after (but never within) other progams or subprogams, ard
when they are referenced, the flow of control will passto them. At the end of
the sub-pogram control should usudly be passd back to the cdling routine.
The END staement in the fundion teminaes the action of that function, ard
the next siatement to be executed will be the next in the caling routine Con
side thefollowing example:—

PROGRAM FRONT
INTEGER FACT,I,J

DO 1 1=-2,10
J=FACT(l)
PRINT 100,1,J
1 CONTINUE
100 FORMAT(1X,l4, FACTORIAL IS *,110)
END
INTEGER FUNCTION FACT(N)
INTEGER N,|
FACT=1
C
C THERE ARE THREE CASES.
C)N>1 FACTORIAL EVALUATED
C 2)N=0ORN=1 FACTORIALIS 1
C 3)N<0 FACTORIAL ILLEGAL
C

IF(N.LT.0)THEN
PRINT *’ NEGATIVE VALUE FOR FACTORIAL’
PRINT *’ NOT DEFINED’
FACT=0
ELSE
DO11=2N
FACT = FACTH
CONTINUE
ENDIF
END

122 Functions Chapter 13

Theeis anathe important feature. In afundion called FACT, somrewhere there
must be a variable FACT appeaing on the left hand side of an equals sign.
Note tha the type of FACT deerminesthe type of the returned value

Wha restrictions have been forced on us?Primarily, we can ge only one an
swer a simple variable, returned as the result of seting sornrething equd to that
function name (i.e an explicit reference). Imagne tha we wishe to find the
maximum and minimum of a vector of dat. Sdving this through fundions
actudly requires two functions, e.g.

XMIN = VMIN(X,N)
XMAX = VMAX(X,N)

wheae VMIN and VMAX are the fundionsto find the minimum and maximum,
X isthevedor of vaues ard N is the numbe of vauesin X. If we look at the
actud codeto caculate thevaues—

REAL FUNCTION VMIN(V,N) REAL FUNCTION VMAX(V,N)

INTEGER I,N INTEGER I,N
REAL V REAL V
DIMENSION V/(100) DIMENSION V/(100)
VMIN = V(1) VMAX = V(1)
DO 1 1=2,N DO 1 1=2,N
IF(V(1).LT.VMIN)THEN IF(V(1).GT.VMAX)THEN
VMIN=V()) VMAX=V())
ENDIF ENDIF
1 CONTINUE 1 CONTINUE
END END

Theeis clealy sonme dwlicaton, and in a later chapter we will look at ways of
eliminating even this overlap

There is anothe way of terminating the action of a fundion besites the END
staement. This is done using the RETURN staenment. In each of the examples
above a RETURN coud have been inseted before the END staement. Equdly
wedl however, the RETURN coud be placed a any other logicaly appropriate
postion. The exanples above offer little scope for dternaive postions for a
RETURN, butin more complex functions, this may be appropriate. This flexi-
bility stems from the possilility of regarding fundionsin two logicaly distinct
ways:—

e as an action you want caried out; in which case you END the
action;

* asasetion of programcodetha you jumpto and execute in this
case you RETURN to the calling routine

It is consicered good prectice to have only one ext route from a sub-pogram
This is pethgos an ove-zeglous interpreaton of the tends of strudured pro-

Chapter 13 Functions 123

granming, since it is often neassary to indicate an error condition in the func
tion; manipulating the strudure in orde to ensurea single exit at the END
staement may imposea degree of peversity on the flow. Whee RETURN is
assodated with anerror condiion, there can belittle to criticise.

The notion of functions, retuming a single value through the fundion name
would seem to preclude notificaion of erors. It is possible to return other val-
ues through the arguments. In othe words, the argumerts to the fundion may
aso be usal to trarsfer informaion from the fundion to the caling subpro-
gram, aswell as the more conventional direction. In generd terms, this may be
discouraged, butfrom time to timeit is a usdul feature. Later, a beter strucure
to encompassthis possibility will beintroduced.

Statement functions

The staenent fundionis avery simplified form of the fundion. If it is possilbe
to compress the calculation required into a single staement (which might of
coursetake up severa continudion lines), it may be expressed as a statement
function.

Sud a fundion would occur within a program segnent, immediately before the
first executable statemert. This very simplified form may nat refererce an aray
name (athough it could reference an array dement), and, if charader variables
are passe to it, there can be no substring references (see Chapter 17).

Sincethe statemert fundionis spesifi ed within a program segment, it may only
be usedwithin tha segment, and cannot be refererced from any othe fundions
or subpoutines, unlike theintrinsicor other use-defined functions.

Thefollowing are examplesof the satement fundion:—
CUBRT(A)=A**(1./3.)

IDAY(1,J,K)=3055*(J+2)/100—(J+10)/13*2-91
1+(1—(1-1/4*4+3)/4+(1~1/100*100+99)/100
2—(I-1/400*400+399)/400)*(J+10)/13+K

AREA(ANG,B,C)=B*C*SIN(ANG)*0.5
or

AREA(A,B,C)=((A+B+C)*(B+C—A*0.5)*(A+C—B*0.5)*
1 (A+B—C*0.5))**0.5

Thefirst of thesestatement fundions, CUBRT, is sdf-explaratory. The second,
IDAY, requires a little more comment. IDAY calculatesthe day of the year on
which a patticuar dae falls, given the yea |, the month J (where Jaruary is 1,
Februay is 2, and so on), and the the last par of fundionscalculate the area of

124 Functions Chapter 13

a triargle; the first from the included ange ANG, ard the sides A and B; the
seond from thethree sides A, B and C. This last fundion is rather clumsy, can
you see why?

The siatement funaion is used as follows:—

PROGRAM FACTOR
REAL RESULT,PI.EN,R
PARAMETER (PI=3.14159265358)

C STIRL CALCULATES AN APPROXIMATION TO N! FOR LARGE N
STIRL(X)=SQRT(2.*PI)*X**(X+0.5)*EXP(-X)

EN=10.

R=7.
C NUMBER OF POSSIBLE COMBINATIONS THAT CAN BE FORMED WHEN
C R OBJECTS ARE SELECTED OUT OF A GROUP OF EN
C RINI(N-R)!

RESULT=STIRL(EN)/STIRL(R)*STIRL(EN-R)

END

Summary

» There are a large number of Fortran suppied fundions (intrinsic functions)
which extend the powe and scope of the languaye Sone of thesefundionsare
of gereric type and can take severd different types of argument. Others are
restricted to a paticular type of argument.

* When the intrinsic functions are inadequae, it is possble to write use de
fined fundions. Besides expanding the smpe of computaton, sud fundions
hdp in problem visualisaion and logical subdvision may reduce duplication,
and genegdly hdp in avoiding progamming errors.

* In addition to sepaately ddined userfundions, statemert functions may be
employed Theseare single staements which are used within a progam seg
mert.

» Althowgh the normal ext from a use ddiined fundion is throuch the END,
other, abnormal exits may be defined through the RETURN statemert.

» Communicaion with a fundion is throughthe function nane ard the function
argurmrents. The function mustcontain a refererce to the fundion name on the
left hard side of an assignmert. Resuts may also be returned throwgh the argu-
mert list.

Chapter 13 Functions 125

Problems

1. In Chapter 10 there is a program which calculates cderdar dates from year
and day within year. The statement function IDAY in this chepter reverses this
opedtion, to caculate day within year from calendar daes. Comnbine thesetwo
elementsin orde to testthdr equivalerce

2. Type in and test the fadorial exanple given in the chgte. The explicit
formua usal for the evauation of RI/N!(N-R)! is rather crude Write a function
which improveson it.

3. Type in and test eithe the minimum or maximum exanple fundion. You
will nead a program segnent to usethefunction.

4. Improwe on the statemert function:—

AREA(A,B,C)=((A+B+C)*(B+C-A*0.5)*(A+C-B*0.5)*
1 (A+B-C*0.5))**0.5

for the area of atriargle, where A, B and C are the lengths of individual sides.
This need nat be a siatement fundion; test it. You might consicer the situaton
where theinputis incorred, and A, B ard C cauld not represant a triangle.

5. Find out the action of the MOD fundion when one of the arguments is
neggdive. Write your own modulus fundion to return only a postive remande.
Don't call it MOD!

6. Cregte a table which gives the sines, cosines and tangents for O degreesto 90
degressin 1 degreeintervals. There are a few minor cachesin this queston.

14

Making deasions (2)
Wilt thou still go downto destruction
William Blake, ‘Jerusalem’

Aims

The aims of this chepter are—

* to introduce two othe conftrol stucurestha can be usal both in
decision making and for the control of repdition

* thewhleloop

* therepeat until constua

Chapter 14 Making Decisions (2) 127

Other control mechanisns

There are many problems tha you will meet tha cannot be solved with the
control mechanismsintrodwcead so far. The two mechansms introduced in this
chapter do not have a dired form, rather they have to be constricted from more
primitive forms. The two high level mecharisms are oftenwritten as:—

» while (expressior) do (blodk of staenments)
and
* repest (block of staements) until (expression)

You shoud now be familiar with the ideas of bath a logicd expresson, and of
a blodk of staements, so the above shoud poseno problemsto you. Note that
the while constud may never be executed and the repeat constua will aways
beexeated once. The whileloop isimplemerted in Fortran as:—

label IF (logical expression) THEN
. block of statements

GOTO label
ENDIF

The following example shows a complete progran usingthis constud.

PROGRAM FIND
C THIS PROGRAM PICKS UP THE FIRST OCCURRENCE
C OF A NUMBER IN A LIST.
C A SENTINEL IS USED, AND THE ARRAY IS 1 MORE
C THAN THE MAX SIZE OF THE LIST.
DIMENSION A(101)
INTEGER A,MARK
INTEGER END,|
READ (UNIT=1,FMT=*) MARK
READ (UNIT=1,FMT=*) END
READ(UNIT=1,FMT=*) (A(l),|=1,END)
=1
A(END+1)=MARK
100 IF(MARK.NE.A(I))THEN
I=1+1
GOTO 100
ENDIF
IF(LEQ.(END+1)) THEN
PRINT*’ ITEM NOT IN LIST’
ELSE
PRINT*’ ITEM IS AT POSITION |
ENDIF
END

128 Making Decisions (2) Chapter 14

The repeat urtil constrict can bewrittenin Fortran as.—

label CONTINUE
Body of the loop

IF (expression) GOTO label

There are prablems in most disciplines tha require a numerical solution. The
two main reasons for this are tha either the problem can only be solved nu-
merically, or tha an andytic soluion invaves too much work. Sdutions to this
type of problem often require the useof the repea untl construd. The prob
lem will typically require the repdition of a cdcuation unil the arswers from
sucessive evauations differ by sormre small anount, dedded genegdly by the
n&ure of the problem.

Here is a program extract to illustiate this.—
PARAMETER(TOL=10E-6)

10 CONTINUE

CHANGE=

IF (CHANGE.GT.TOL) GO TO 10

Thevalue of the tolerance is set here to 10E-6.

Examples

The fundion ETOX illustraesore use of the repeat until constud. The func
tion eveluates e¥*x . This may be written asi—

1+ x/11 + X321 + X331 ...
or

o)
1+3 x"Y(n-1y (xin)

n=1
Every succeeding term is just the previous tetm multiplied by x/n. At sone
point the term x/n becomesvery smal, so that it is not sensibly differert from
zem, ard sucessiveterms add little to the vaue. The function therefore repeats
the loop untl x/n is smaller than thetolerarce The number of evaluaionsis not
known beforehand, sincethis is dgpendent on x.

Chapter 14 Making Decisions (2) 129

REAL FUNCTION ETOX(X)

REAL TERM,X,TOL

INTEGER NTERM

PARAMETER (TOL=0.001)

ETOX=1.0

TERM=1.0

NTERM=0

1 CONTINUE

NTERM=NTERM+1
TERM=(X/NTERM)*TERM
ETOX=ETOX+TERM

IF(TERM.GT.TOL)GO TO 1

END

Both typesof loop are combined in this lastexample. The agorithm employed
hee finds the zeo of a fundion. Essatidly, it findsan inteval in which the
zero must lie; the evaluations on ethe side are of different sign. The while
loop ensure thatthe evaludionsare of different sign by exploiting the knowl-
edge tha the incident wave heght must be gregter than the reformed wave
heght (to give the lower bound). The uppe bound is found by expeaimert,
making the inteval bigger and bigge. Onee the interva is found, its mean is
usal as a new paential bound The zero must lie on one side or the other; in
this fashion, the interva containing the zero becomes smdler ard smdler, untl
it lies within some tolerance. This approech is rather plodding and unexciting,
butis suitalde for a wide rangeof problens.

This example is drawn from a situaton where a wave breaks on an offshore
reef or sard bar, and thenreforms in the near-shae zonebdore bregking agan
on the coast. It is easker to obseve the hedghts of the reformed waves reaching
the coast thanthoseincident to theterrace edye

130 Making Decisions (2) Chapter 14

PROGRAM BREAK
REAL HI,HR,HLOW,HIGH,HALF,XL,XH,XM,D,TOL
PARAMETER (TOL=10E-6)

C PROBLEM - FIND HI FROM EXPRESSION GIVEN IN FUNCTION F
F(A,B,C)=A*(1.0-0.8*EXP(-0.6*C/A))-B

C HI IS INCIDENT WAVE HEIGHT ©

C HR IS REFORMED WAVE HEIGHT (B)

C D IS WATER DEPTH AT TERRACE EDGE (A)
PRINT*,” GIVE REFORMED WAVE HEIGHT, AND WATER DEPTH’
READ*,HR,D

C

C FOR HLOW- LET HLOW=HR
C FOR HIGH- LET HIGH=HLOW*2.0
C
C CHECK THAT SIGNS OF FUNCTION RESULTS ARE DIFFERENT
C
HLOW=HR
HIGH=HLOW*2.0
XL=F(HLOW,HR,D)
XH=F(HIGH,HR,D)
C BEGINNING OF WHILE
1 IF((XL*XH).GE.0.0) THEN
HIGH=HIGH*2.0
XH=F(HIGH,HR,D)
GOTO 1
ENDIF
BEGINNING OF REPEAT UNTIL
HALF=(HLOW+HIGH)*0.5
XM=F(HALF,HR,D)
IF((XL*XM).LT.0.0)THEN
XH=XM
HIGH=HALF
ELSE
XL=XM
HLOW=HALF
ENDIF
IF(ABS(HIGH-HLOW).GT.TOL)GO TO 2
C END OF REPEAT UNTIL
PRINT*’ INCIDENT WAVE HEIGHT LIES BETWEEN'
PRINT*HLOW,” AND ’,HIGH, METRES’
END

N O

Chapter 14 Making Decisions (2) 131

Summary

You have been introducd in this chapter to two more control strudures. These
are the—

* the while constrict
and the
» therepeat until constua

These two construds, togethe with the BLOCK IF, and IF THEN ELSHF are
sufficient to solve a wide class of problems.

The repeat urtil ard while are both made up from the more primitive IF ard
GOTO stadenents. Theselatter two statements can be usal in a variety of ways.
However, it is essential tha you restict yourséf to a smel sd of well defined
structures. Unrestricted useof IF and GOTO statements can lead to a progran
that looks like a bowl of spagheti, where the GOTOs take you on a mystery
tour. The adion of the program rapdly becomes very difficult to work out.
Onee this has hgppenead inserting new fedures, and correcting the program may
well becomeimpossble. This will nat be apparent at the stat of progamming,
butexperience will teach you the hard way.

Problems

1. Rewrite the progam for period of a perdulum. The new program should
print out the lergth of the pendulum, and period for lengths of the pendulum
from O to 100 cms in steps of 0.5 cms. The progran shoud incorporate a
function for the evdudion of the period.

2. Using fundions,do thefollowing:—
* Bvduate n! fromn=0 to n=10
+ Cdculate 76 factorial.
* Now calculate (x**n)/n!, with x=13.2 and n=20.
* Now doit anothe way.

3. The progam BREAK is taken from a real example. In the paticular prob
lem, the reformed wave height was 1 metre, ard the water depth at the reef
edgewas 2 metres. Wha wasthe incident wave hdght? Rather than using an
absolue vaue for the tolerance, it might be more redistic to usesone value
related to the reformed wave height These heights are unlikely to be reporied
to better than about 5 pe cert accuracy. Wave erergy may be taken as propor
tiond to wave height squared for this example. Wha is the redudion in wave
eneagy as aresult of bresking on thered or bar, for this particuar case

132 Making Decisions (2) Chapter 14

4. Wha is the effect of usirg INT on negaive red nunmbes?Write a program
to denorstrate this.

5. How would you find the neaest intege to a real nunbea? Now do it another
way. Write a program to illustate both methods. Make sure you test it for
negdive aswell as posiive vaues.

6. The fundion ETOX has been given in this chepter. The standad Fortran
function EXP doesthe same job. Do they give the sane answes? Curiousl the
Fortran standad does nat speeify how a stardard function should be evaluated,
or even how accurate it shauld be.

15

Error detection ard correction

Weknowthat the programis correct, becausewe designed it correctly.

M. A. Jackson, ‘Prindples of Program Design’
Aims

The aims of this chepter are—

* to introdue sone of the common ways tha errors get into pro-
grans

* to look at some of the ways the computer sysem can help in the
processof error detection ard correction

134 Error Detedion and Corredion Chapter 15

Intr odudion

Errors are dueto a wide variety of causes.They may indude simple typing
errors, incorrect use of certain staements, logic errorsetc. The computer systen
canhelp you in a variety of ways in the error detection ard correction process.

The computer systen can hdp detect erorsat two stages. Theseare —
» At thecompilation stage

The methods at this stage involve the sekction of
compler options,and the useof an up-to-dae listing
of the program

* At theexecution stage

Again, the method genedly dependson a chace of
compler optons, but now there may be the oppatu-
nity to use anothe program, soretimes given the
name postmortan dump, and on sone sysens
there is the possilility of using an interactive de
buge .

Fecilities like thosedesaibed below shoul be available on maost systems.

The caompilation process

In thefirst chepter it wasstaedtha oneof thethings tha a compler does is to
take a program written in a high level language and prodice a sdé of macdine
level instrwctions tha can be executed by the hardwatre. In fact, this is only one
of a possiby large numbe of thingstha a compiler can do. Let us now con
sidea sone of the other fundions of a compiler, paticularly thosewhich may
hdp in error detection ard correction.

Compiler options

Error traceback

Wha this mears is tha when an execution error ocaurs, there will be code
addel to your program that will try to work back from where the eror causel
the program to blow up to where the eror may have been generated Note that
an error can ocaur quite eay on in a progam ard take a consideable while
before it has a sefous and naticesble effect.

Array checking

Causearray boundsto be checked. An array going out of boundsis one of the
mostcommaon errorsin Fortran programming. For exanple, if a progran cdcu
lates the index for an array reference, in order to place information into that
array, it is possibé for the programto go outsidethe memory sd asie for the

Chapter 15 Error Detedion and Corredion 135

array. This mears that the program could be over-writing itsdf. This kind of
error is not aways trapped ard diagnosedby Fortran compilers.

String checking

Turn on the checking of substring operations on character daa. This kind of
error can bevery diffi cut to find sometimes.

Post-Mortem Dump

Switch on the post-mortem dump. If your progam goes wrong at exeaition
time anathe program will try and work out where your program went wrong.
This option requires the compiler gererated symtwl tables to be available. Sym:
bol tables are compiler generatedfiles. They are usal in avariety of ways at the
compilation stage. They can aso be of use a the exeaution stage by other
programs. The contents of a synmbol table may be all of the variales with alist
of the varialle attributes, eg. red, integer etc. These tables erale the post
mortem dump prog-am to come in after your program has gonewrongard give
you useful information regarding the state of your progam at the time it went
wrong. Another file tha needs to be available is theload or linker listing. This
is a listing fil e containing information about where variales etc. are actudly to
be found in memory. When you reference anaray, for example, there will bea
stolage locaton assottedin the linker listing.

Debug

Make availale a run-ime de-bugging environmert. This eraldes your progran
to beinterrupted and values of variables to be printed out or even changead. The
beauty of this option is tha no charges to the progran are necessay, you
interact with your program through the de-bugging progam. This facility is
simple yet poweful, and can sawe consideable amounts of time when de-bug
ging large programs.

Listing options

The conpiler genegates a file, the contents of which are discussed in more
detail bdow, cdled a listing file. This information can be written to the termi-
nd or to a file. Whilst working at a termind it is possilbe to write this
information to a file and then send thefile to be printed.

When the compiler gives extra informaton and diagnosics it refers to the
sour@. Hence an upto-date listing is esential. Most people do not generate
an up-to-dae souce listing each time they compile However, if you are trying
to find bugs in your program, it makes no senseat al not to work from an
upto-dae listing, reflecting the program at the time it wert wrong Often you
will make small changeswhich you think do not causeany problems.

136 Error Detedion and Corredion Chapter 15

However, changing programs tends to make them go wrong, and you should
always work from an up-to-date listing when trying to find errors.

We woud want thelisting to contain at least
* the complete souce
» alist of all variables fundions etc with their type

» acrossrefererce of all vaiiablesand where they occur in the pro-
gram

It is dso usdul with large programs if the listing has page numbering, and that
each fundion (or sulbroutine) starts on a new page — it makes thelisting easier
to use, and locate information.

Optimise off

When developing programs there is no point geting the compiler to optimise
your program when there are going to be erors. Optimisaton is constdered
moregenaaly in Chaper 21.

Summary

This chapter has looked at the kinds of facilities you could expect to be avail-
able when debugging progams.

There will prabably be deébuggng aids availalde on your madine tha have
direct counerpats to the ones mentioned above and redly it is up to you to
seewha your systen hasto offer in this area.

Problems

1. Find out what optionsthere are when campiling your progran. In wha way
are they similar to the ones mentioned in this chgpter? In wha ways are they
different?

16

Conmmplex, double preasion ard logical

A messege yes/no samaphaoe
he black/white keys in/out whirl of morse
hogooesigrals salation deviously

Nathaniel Tarn, TheLaurd Tree
Aims

The aims of this chepter are—

* toreview thevariable types already introduced: real, integer, char
acter

* to examne the othe vaiiable types available in Fortran: double
predsion, complex and logicd

e tointroduce the concepts necessay to uselogica expressonsef-
fectively; namely, logical variales, hierarchy of operations, the
truth table

138 Complex, double precision and logical Chapter 16

Intr odudion

Fortran recognsesa vaiiety of variable types. You have aready encounered
real, integer and character. Real variables are thase which may take any numneri-
cal value within the range of the machine, while integers may take only
integrd, or whole numbe values. Chaacters, as thar name suggss, contan
character information, which is not numerica at al. These three types of daa
stote or encode thar information diff erertly, sothat the actud represenation of
the information is quite diff erert. Conste thefollowing:—

REAL X
INTEGER |
CHARACTER*2 C
X=10.0

=10

c=10

Although X, | and C each contain a 10, the machine perceives these vaues
rether differently. The following is an example of how one meachine siores the
above values. We use octd (base 8) numbes to express the undelying bit
paterns. You don't need to understand the following completely, just appreciate
thatthey are radically different.

CDC, 60 bit
Integer 10 = 0000@MO0WO0OWO0MW12
Red 100 = 17235%00M00MO0MO0
Chaacter 10 = 34335H555%H55555555

Thee are 49 chaacters in the stardard Fortran character sd. You may, how-
ever, stoe any charader tha is available within the operating system character
set This can vary consterably. Some older machines (CDC) use6 bits to rep
resert characters. This means tha you can only have 64 characters avail able,
withou having to resot to sone more complicated scherme. Most machines
now use eight bits to represen charaders, ard this makes easily available the
two mostcommon charader sets, ASCIlI and EBCDIC. The ASCII chaacter set
is given in appendix A. On most machines tha useASCII, there are 95 printing
characters, ard on madines that use EBCDIC (IBM and AmdaHl) you have
even more! Why this diff ererce? The Fortran character sd is defined for form-
ing variade names,for numerical information, arnd for the operators which are
needed. However, any patem which can be legitimately expressedon the ma-
chine may be legitimaely stored into a character variable. There are no checks
peformed on the conterts of sud variables.

If you say nothing to the contrary, reds and integers will take thar types from
the first charader of the variable name integers begin with eithe I, J,K, L, M
or N, while reals beagin with any othe aphéabdic character. You can over-ride

Chapter 16 Complex, double precision and logical 139

this implicit typing by declaring given variablesto be REAL or INTEGER as
we hawe tried to do in the precedng chapters, eg.

REAL A2,INDEX
INTEGER INCH,AGE

Any other varialde type must be declared explicitly. In Fortran, up to six char
acters are alowdd for variable names.

Thee is ancthe way of over-riding the default typing, through the IMPLICIT
declaration. This alows you to speify the type to be taken by al variabe
namesbeginning with a particuar letter or range of |etters:

IMPLICIT REAL(K-R)
IMPLICIT INTEGER (A)
IMPLICIT CHARACTER (C-E,X)

would make al variables beginning with K, L, M, N, O, P, Q and R real
variales; those begnning A would be integer, while those whose nanes had
the initial letter C, D, E and X would be characters. Elsewhere, default typing
would still be in opeaation. The IMPLICIT staement may be used for the other
variale typesto be mentioned in this chapter.

Double Predsion

The double precision vaiiable typeis an extersion to the real varialle type ard
refleds the fad that we are deding with a digital machine which has only a
limited precision. At the top end of the range of scientific machines (Cray and
CDC) 64 ard 60 hits are usel respectively to represent reals. This means that
1.00 000 000 000 01 is different from 1.0. On a smdler word size machine
(eg. 48-bit, 32-bit, 16-4t) the two numbers would not be distinguishale. In
order to accommodate sone of these potentia prodems of diff erert word size
and soneimes just to increase precision (necessay with certain algorithms),
we can extend the nunmbe of bits usel to represat a real number. Doulde
precision on a CDC or Cray gives 120 or 128 hits respetively. This is rarely
usal, but is occasiondly required. However, double precision usedwith a 32-bit
madine would give similar acauragy to the 60-bit CDC word, or 64-hit Cray
word. Double precision will be necessay on smdler word length machinesin
most applications. Note tha double precision is only applicable to real num-
bes. Thereis no conaept of doube precision for integers.

In orde to usedoube precision you mustdeclare it explicitly:

DOUBLE PRECISION A1,A2

A1=A2*2

140 Complex, double precision and logical Chapter 16

All the fundions ard operators which work with real will work with doule
precision, but, as always, be careful when you mix typesin peforming cacula
tions.

Reading and writing dowble precision values is dore in exactly the sane way
that you read and write ary other red numbe — through the E and F formats.

Complex

This vaiiable type reflects a change in the nature of the daa — the COMPLEX
data type, where we can store ard manipulate complex variables. Unless you
are an erginea, or one of vaiious vareties of mathematcian you won't find
this paticularly usdul. Conplex numbes are defined as having a ‘real ard
‘imaginay’ par; i.e.

a=x+iy
wherei is the squae roa of —1

They are usedheavily to solve a limited range of problems in certain disci-
plines, ard they are not supmrted in mary progranming languages as a base
type To use this vaiiable type we have to write the number astwo patts, the
real and imaginary elemerts of the number, for exanple

COMPLEX U
U=(1.0,2.0)

represents the complex number 1+2. Note tha the complex number is erclosel
in brackets. We can do arithmetic on variables like this, and most of theintrin-
sic funaionslike LOG, SIN, COS etc. accept complex data type as argument.
However, note tha ary use-dedined fundions which retum a complex would
have to be of the form:

COMPLEX FUNCTION OMEGA(U)

or sorrething similar. All the usua rules about mixing diff erert vaiiable types,
like reals and integers, aso apply to complex. Complex numbers are read in
and written out in a similar way to real nunbe's, but with the provision that, for
each single complex value two format desaiptors mustbe given. You may use
eithe E or F formats (or indeed mix them), as long as there are erough of
them Although you use brackets around the pars of numbers in a program
thesemust not appea in ary input, nor will they appear on the output.

Fortran has a nunmbe of fundions which help to clarify the intert of mixed
mode expresgons.The fundionsREAL, DBLE, CMPLX and INT can be usal
to ‘force’ any variale to real, dowble precision, complex or integer type Thus

Chapter 16 Complex, double precision and logical 141

INTEGER |
DOUBLE PRECISION A
=1

A=DBLE(l)

will convet an intege variable or vaue into a doublke predsion variade or
value. In fact, in theexract abowe,

A=l

would have had the desired effect too. However it is gengaly regarded as godd
prectice to usethefirst form, as it makes explicit exactly what is meant.

Where this set of fundions becomes valuable is when we have more compli-
cated expressonsto evauae, where we might be concemed that the arithmetic
might be donein mixed type, with results which were not truly articipaed;

A=I/J
will giveinteger alithmetic in thedivision, while
A=REAL(I)/REAL(J)

would do the division in red arithmetic. Note howerer tha the following will
notdothe I/Jin rea arithmetic.

A=REAL(1/J)

CMPLX is a little different, since, as we hawe dready sea, it can take two
argurmrents. When it does, they must both be of the same type integer, real or
dowble precision When they are dowble precision, only the first ‘half’, i.e the
singde precision red patt is used. Thee is no such thing as double precision
complex. Whenonly one argument is presen, it is assunedto bethe ‘red’ patt,
and the imaginary pat is set to zero.

Remenbe that INT aways returns the ‘truncated’ pat of the number, renov-
ing the parts after the dedmd point. Thus we must think carefully about its
effect on negaive nunbes.

Logical

Often we hawe situaions where we need ON/OFF, TRUE/FALSE or YESNO
switches,and in sud circumstances we can use LOGICAL type variables: eg.

LOGICAL FLAG

Logicds may take only two possible values,asshownfoll owing

142 Complex, double precision and logical Chapter 16

FLAG=.TRUE.
or
FLAG=.FALSE.

Note the full stgos, which are esential. With a little thowght you can see why
they are needed. You will already have met some of the ideas associated with
logical variables from IF staements.

IF(A.EQ.B) THEN
ELSE
ENDIF

Thelogical expressia (A.EQ.B) returnsa valuetrue or false, which then deer-
mines the route to be followed; if the quantity is true then we exeaute the next
staement, else we take the othe route.

Similarly, the following example is also legitimate:

LOGICAL ANSWER
ANSWER=.TRUE.

IF (ANSWER) THEN
ELSE
ENDIF

Again the expressim IF (ANSWER) is evaluaed; here the variable ANSWER
has been sa to .TRUE, and theefore the staenents following the THEN are
executed. Clearly, conventiond arithmeic is inappropriate with logicals. What
does 2 times true mear? (very true?d. There are a number of spesial opeaors
for logicals:

.NOT. which negdaes a logical vaue (i.e. changes true to
false or vice versa)

AND. logicd union

.OR. logical intersedion
To illustrate the useof theseopeators, consicer the following progran extract:

Chapter 16 Complex, double precision and logical 143

LOGICAL A,B,C
A=TRUE.
B=.NOT.A

C (B now has the value ‘false’)
C=A.OR.B

C (C has the value ‘true’)
C=A.AND.B

C (C now has the value ‘false’)

To gaugetheeffect of these opeaaorson logicas, we can consulta truth table -

X1 X2 .NOT.X1 X1.AND.X2 X1.0RX2
true true false true true

true false false false true

false true true false true

false false true false false

As with arithmetic operators,thereis an orde of precadence assoated with the
logical operabrs.

AND. is carried out before

.OR.and .NOT.

In deding with logicals, the opedtions are carried out within a given levd,
from left to right Any expressims in brackets would be dedt with first. The
logical opeators are a lower order of precedence to the arithmetic opeators, i.e
they are carried out later. A more complete opeaator hierarchy is therefore:

expressiors within brackets

exporertiaton

multiplicaion/division

additionsubtradion

relational logical (.GT. .GE. .LT. .LE. .EQ..NE)
AND.

.OR.and .NOT.

Althowgh you canbuild up conplicated expressiors with mixturesof operabrs,
theseare often diffi cut to comprenend, and it is generdly more straightforward
to bresk ‘big’ expressims downinto smaller ones,whaose purpase is moreread
ily appreciated

Historicdly, logicals have nat been in evidence extensively in Fortran pro-
grams, athoudh clealy there are occasions on which they are of consicerale
use Thdr useoften aids considerably in making prograns more modulr ard

144 Complex, double precision and logical Chapter 16

comprehensile. They can be used to make a complex section of codeinvolving
seweral chaices much more trarsparert by the useof onelogica fundion, with
an appropriate name. Logicals may be usedto control output, e.g.

LOGICAL DEBUG
DEBUG=.TRUE.
IF(DEBUG) PRINT *’LOTS OF PRINTOUT’

ensures tha, while de-bugging a progam you have more ouput. Then, when
the program is ‘correct’, run with DEBUG=FALSE

Note that Fortran doestry to proted you while you uselogical varables. You
camot do this:

LOGICAL UP, DOWN
UP=DOWN-+.FALSE.

or

LOGICAL A2
REAL OMEGA
DIMENSION OMEGA(10)

A2=OMEGA(3)

The campiler will nate that this is an error, ard will not pemit you to run the
program. This is an example of strorg typing, since only a limited number of
predgemined operaions are pemitted. The red, integer, complex and double
precision variable types are much more weakly typed (which hdps to lead to
the confusioninheaent in mixing variable types in arithmetic assgnments).

Since logicds may take only the vdues . TRUE. ard .FALSE, the possibilities
in reading ard writing logicd values are clearly limited. TheL forma dlows
logicals to be inpu and output. On inpu, if the first non-dank characters are
eithe T or .T, thelogical vdue .TRUE. is staed in the correspondng list item;
if the first non-blank characters are F or .F, then .FALSE. is staed. (Note
therefore that reading, say, TED ard FAHR in an L4 format woud be acoept-
able) If thefirst non-dank character isnat F, T, .F or .T, thenan error message
will be geneated. On output, the value T or F is written out, right justified,
with blarks (if appropriate). Thus,

LOGICAL FLAG

FLAG=.TRUE.

PRINT * FLAG, .NOT.FLAG
100 FORMAT(2L3)

would produce

Chapter 16 Complex, double precision and logical 145

TF

a the temind.

Asdgning a logicd variable to anything other thana .TRUE. or .FALSE.value
in your progam will resultin errors. The ‘shorthand’ formsof .T, .F,Fard T
are not acceptable in the progam.

Typing with functions

Most of the mahematical fundions will take ary type of argunent (excluding
logical and charader), butthere are case where this is alittle absurd.Integer is
not an appraoriate argument for some fundions, ard shaild nat be used Al-
thougha goad compiler will tell you when you have made errorsin typing, not
all compilers are so hdpful. It is bestto try to develop a ddfensive style where
you depend as little as possble on the compiler interpreiing complicated or
abstrise staements.

With use-ddined fundions we need to hawe the function name of the comrect
type (integer, rea, double precision, complex, logical or chaacter). In the case
of real and integer we can let ddfault typing take over, through the first charac-
ter of thefundion name, but for the othe's we mustusea stricturelike:

LOGICAL FUNCTION NOMORE(A,B)
REAL AB
READ(5,FMT=10,END=1)A B

10 FORMAT(2F10.4))
NOMORE=.FALSE.
RETURN

1 NOMORE=.TRUE.
END

However it is good practice to explicitly type dl vaiiablesto avoid potertial
erors.

Summary

In addition to redls ard integers, Fortran recogrises two other types of numeri-
cal daa— double precision and complex.

« DOUBLE PRECISION doubles the number of bits which a real
number uses, thus extending the predsion. The actud precision
obtainae deperds on the chaacteristics of the machine beng
usel.

* COMPLEX is used to store and marpulate complex nunbes
thosewith aredl and imaginary part.

* Thee are standad fundionswhich allow conveasion beween the
nuneical daatypes— DBLE, CMPLX, REAL and INT.

146 Complex, double precision and logical Chapter 16

Another type of data — logicd — is aso recognised. A LOGICAL variale
may take one of two vaues — true or false

« Theae are speial opeaators for manipulating logicds .NOT,,
AND. and .OR.

* Logicd opeaators have a lower orde of precedence than any oth
ers.

Any userddined fundionswhich return these daa types through the function
name must provide the type explicitly onthe FUNCTION staement, e.g.

LOGICAL FUNCTION FLAG(A)
DOUBLE PRECISION FUNCTION ADD(X,Y)
COMPLEX FUNCTION CSINH(Z)

Problems
1. Why are the full stopsneeded in a statemert like A = . TRUE.?
2. Gererate atruth table like the onegiven in this chapter.

3. Write alogicd function, which will read in numericd daa from the termind,
but will ‘flag’ any daa which is negatve, and will aso turn these negdive
vauesinto positive ones. Find the lamgest vaue as well.

4. Write aprogam to read in an arbitrary nunmber of nunmbers, using a function
called MORDAT to detect if there is more daa.

5. Theprogam usal in chaper 12 which calculated the roots of a qualratic had
to akardon the calculation if the roots were complex. You shoud now be ale
to remedy this, remembering that it is necessay to declare any complex vari-
ables. Instead of raising the expression to the power 0.5 in order to square root
it, use the fundion SQRT If you manage this to your satisfaction, try your
skills on theroots of a cubic (se= the prodems in chaper 12).

17

Characters

Thesemdaphysics of magtians,
And necromantc bools are heavenly;
Lines,circles, letters and charaders;

Christopher Marlowe ‘The Tragical Histary of Doctor Faustus’
Aims

The aims of this chepter are—
* to extend the ideasaboutcharaders introdued in earlier chgptears

* to damonstate tha this enables us to solve a whde new rarge of
problerns in a satisfactory way

148 Characters Chapter 17

Intr odudion

Chaacter information is of a fundanentdly differert type to numerical infor-
maton. There are no concegs of arithmetic assodated with the manipulation of
chaacters. Thecharader variable is strongly typed.

The basic unit is an individud character — any character which is available on
your keyboad. We will restrict oursdvesto the Forran charader sd, thatis:

the alphanumerics A-Z and 0-9
the operators: + —/ *

the punctuation: , . : spaxe()="$

Any of thesecan be a character. Becausethe Fortran standad wished to make
character manipulation and processing gereral acrossa wide range of machines,
it was neassary to define a speia variable type CHARACTER. One impor-
tant consequerce of this is that it is not possible to stote informaion other than
chaacter information in this variable type (no more than you woud expect to
hold ared nunbe in alogica varable). You will remember tha it is syrtacti-
cally correctto say, eg.

A=B

whee A and B are real, complex, double predsion or integer, and no matter
wha comhbination there is, sorrething will hgppen (or rather, will be allowedto
hgopen). However, if ether of A or B is a character vaiiable, the other mustbe
too. Remembe tha theinteger 2 and the character 2 are not the sane as far as
Fortran is concerned.

We may declare our charecter variables
CHARACTER A, STRING, LINE

Notice that there is no default typing of the character variable, and we can use
any conveniert name within the normal Fortran convertions. In the dedaraton
above each chaacter varialdle would have been permitted to store one charac-
ter. Thisis limiting, and, to alow character stingswhich are severd units long,
we hawe to add a piece of information

CHARACTER A*10, STRING*16, LINE*80

This indicates that A holds 10 characters, STRING holds 16, and LINE holds
80. If all the character variablesin a single declaration contan the same number
of characters, we may ablbreviate the dedaraton to

CHARACTER*80 LIST, STRING, LINE

But we cannot mix both forms in the onedeclaration. We can now assign daa
to thesevariables, as follows—

Chapter 17 Characters 149

A=FIRST ONE"’
STRING='A LONGER ONE '’
LINE="THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG’

The ddimiter apostrophe () is needad to indicate tha this is a character string
(otherwise the assgnments would have looked like invalid variable names).

This instartly raisesthe probdem ‘How do | ge an apostopheinto my character
string? The way chosenin Fortranis to represent a single apostrophe within a
character string by two conseaitive apostoptes,eg.

STRING="ARTHUR"”S PROGRAM’

Note that we do not use", the dauble quote which is nat pat of the defined
chaacter sd anyway. Since each par of apostrgohes within a charader string
couns only as a single character, we canhawe a situation like:

CHARACTER PRIME*1
PRIME=""

Although it looks rather qudnt, this is quite straightforward, and, unde the
right circumstrces might be quite useful. Thefirst and last apostoptesare the
ddimiters of the sting, and so contribute ‘nothing’ to the string itsdf. The par
of apostophes is consdered to be a single character which will be staed in a
character variable PRME.

We can read and write character variales throughthe A format

CHARACTER STRING*16, A*10
READ (UNIT=5,FMT='(A)) STRING

is equivalent to

READ(UNIT=5FMT=100) STRING
100 FORMAT(A)

and asoto

CHARACTER FORM*3
FORM="(A)

READ(UNIT=5,FMT=FORM)STRING

Note that, in using the first form, it is neessary to ‘delimit’ the formal ele-
merts of the format in primes to say, in effect, tha this is a character string.
The READ statemerts would alow us to read in a charader vaiable of 16
characters fromlogica unit 5. Similarly

WRITE(UNIT=6,FMT="(A)’) STRING

or

150 Characters Chapter 17

WRITE(UNIT=6,FMT=101) STRING
101 FORMAT(A)

would alow usto write this string out Note tha a statemert like

READ(UNIT=5FMT=10) A,STRING
10 FORMAT(2A)

would read A of length 10, ard STRING of length 16, athowh the format
itsef only indicates tha two chaacter vaiiablesare bang read, ard has nothing
to say about ther lengths. The length information is implicit to the variables
therrsdves. The lengths are fixed in the declaration of the character variables.
This seems to indicae that we are resticted in wha we can do with characters,
sine there seems to be sone limitaton on sizes. This is not true however.
There are manipulations we can peform on charader stringswhich makes it a
very flexible variable typeindead

The first maripulator is a nev opeaator — the concatenaion operator //. With
this opeator we can join two chaacter variables to form athird, asin

CHARACTER FIRST*5, SECOND*5, THIRD*10
FIRST="THREFE’
SECOND="BLIND’

THIRD=FIRST//SECOND
THIRD=FIRST//'MICE’

Whee thee is a discleparcy beween the created length of the concaerated
string ard the declared lengths of the character strings, truncation will occur.
For example

THIRD=FIRST// BLIND MICE’

will only append thefirst five characters of the string* BLIND MICE’ —that is
“ BLIN’, and THIRD will theefore contain ‘THREE BLIN'.

What would happen if we assigned a character variable of length ‘'n’ to a string
which was shorter than n?e g.

CHARACTER C2*4
C2='AB’

Theremaining two characters are considered to be blank, thatis, it is equivalent
to saying

C2='AB '’

Chapter 17 Characters 151

However, while the strings‘AB’ and ‘AB ' are equivdent, ‘AB’ ard* AB’
are nd. In the jargon the chaacter stiings are always left justfied, and the
unse characters are trailing blanks.

If we concatende strings which have ‘trailing blarks’, the blarks, or spaes, are
consicered to be legitimate characters, and the concaeraton begins after the
end of thefirst string. Thus

CHARACTER*4 C2,C3

CHARACTER JJ*8

C2=A

C3="MAN’

JJ=C2/IC3

PRINT*, 'THE CONCATENATION OF ",C2; AND ",C3, IS’
PRINT*,JJ

would appear as

THE CONCATENATION OFA AND MAN GIVES
A MAN

at the temind.

Sormretimes we need to be able to extrad pats of chaacter variables — sub
strings. The actud notation for doing this is a little strangeat first, butit is very
poweful. To extract a sub-sting we mustreference two items;

* (i) thepostionin thestring a which the sub-sting begns,
ard

» (i) thepositon at which it ends.
eg.

STRING="SHARE AND ENJOY’
We may extract pats of this string

BIT=STRING(3:5)

would place the chaacters ‘ARE’ into the variable BIT. This may be manpu-
lated further

BIT1=STRING(2:4)//STRING(9:9)
BIT2=STRING(5:5)//STRING(3:3)//STRING(1:1)//STRING(15:15)

Note tha to extract a single chaacter we refererce its begnning positon ard
its end (i.e. repeat the same position), sothat

STRING(3:3)

152 Characters Chapter 17

gives the sinde character ‘A’. The sub-sting refererce can cut out either one of
the two numerica amguments. If the first is omitted, the characters up to ard
including the refererce are sdected, sotha

SUB=STRING(:5)

would resuk in SUB containing the charecters ‘'SHARE'. When the second ar
gument is omitted, the charaders from the reference are seleded, sothat

SUB=STRING(11)

would place the characters ‘ENJOY’ in the variable SUB. In these examples it
would also be neessry to declare STRING, SUB, BIT, BIT1 and BIT2 as
CHARACTER type of someappraoriate length.

Chaacter variables may also form arrays.

CHARACTER*10 A
DIMENSION A(20)

seb up a chaacter array of twenty elemerts, where each lement contains ten
chaacters. In orde to extract sub-stings from these array elements, we ned to
know where the array refererce and the sub-sting reference are placed. The
array reference comes first, sothat

DO 1 1=1,20
FIRST=A(I)(1:1)
1 CONTINUE

plaas thefirst charader of each elemert of the array into the variade FIRST.
The syrtax is therefore ‘posttion in array, followed by postion within string’.

Any argument can bereplacd by a variable:
STRING(I:J)

This offers interesting possibilities, since we cean, for example, strip out blanks
from astring

CHARACTER*80 STRING, STRIP
INTEGER IPOS,|,LEN

IPOS=0
DO 1 I=1,LEN
IF(STRING(I:I).NE." ') THEN
IPOS=IPOS+1
STRIP(IPOS:IPOS)=STRING(:l)
ENDIF
1 CONTINUE

PRINT*,STRING
PRINT*,STRIP

Chapter 17 Characters 153

Charaaer functions

There are spesial fundions available for usewith chaacter variables: INDEX
will give the stating posiion of a string within another string. If, for example
we were looking for al occurrences of the string ‘GEOLOGY’ in a file, we
could constrict something like

CHARACTER L*80

INTEGER |
1 READ (* END=10,FMT='(A)) L
IZINDEX(L, GEOLOGY")
GO TO1
10 CONTINUE

There are two thingsto nate with this fundion. Firstly, it will only report the
first occurrence of the string in the line; ary later occurrerces in any paticular
line will go unndiced, unless you acocount for this in some way. Secondly, if
the string does nat occur, theresultis zero.

LEN provdes the length of a character string. This fundion is not immedately
usdul, since you redly ought to know how many charaders there are in the
string. However, as later exampleswill show, there are sonre cases whee it can
be usdul. Remembe tha trailing blanks do count as pat of the chaacter
string, and contribute to thelength.

The next group of fundions need to be consideed togeher. They revolve
arourd the conaept of a cdlaing sequence. In other words, each character usel
in Fortran is ordeed as a list, and given a carrespondng ‘weight’. No two
weights are equd. Althoudh Fortran has only 49 ddined characters, the ma
chine you use will gererally have more; 95 printing characters a typical
minimum nunber. On this type of machine the weights woud vary from zero
to 94. Thee is a ddined collating sequence, the ASCII sequence, which is
likely to be the default. The pats of the cdlaing sequence which are of maost
interest are fairly standad throughou all collating sequences.

In generd, we are inteested in the numerals (0-9), the dphabketics (A-Z) and a
few odds and ends like the arithmetic operators (+ —/ *), some purctudion (.
and ,) and pethgps the prime As you might expect, 0-9 cary sucessivdy
highe weights (though nat the weights 0 to 9), as do A to Z. The other odds
and ends are a little more problemaic, but we can find out the weights through
the fundion ICHAR. This fundion takes a single chaacter as argunent, ard
returns an intege vaue. The ASCII weights for the dphanumerics are as fol-
lows.—

154 Characters Chapter 17

One of the exercises is to deermine the weights for other characters. The re-
verse of this procedure is to deermine the character from its weighting, which
can be acieved through the fundion CHAR. CHAR takesan integer argument
and returnsa singde character. Using the ASCII collating sequerce, the dphalet
would be generated from

DO 1 1=65,90
PRINT*,CHAR()
1 CONTINUE

This ideaof aweighing may then be used in four other fundions:—

Fundion Action

LLE lexicdly lessthan or equal to
LGE lexicdly grederthan or equd to
LGT lexicdly grederthan

LLT lexicdly lessthan

In the sequence we have seen before, A is lexicdly lessthan B; i.e. its weight
is less.Cleally, we can uselCHAR and g the sane resuk. For example

IF(LGT(A’,’'B’)) THEN
is equivalent to
IF(ICHAR(A").GT.ICHAR('B’)) THEN

but these fundionscan take character string argumerts of any length. They are
not restricted to single characters. Althoudh the fundionslook a little like the
logical operators,they mustbeusal asfunctions,in the mamer shown.

These fundionsprovide very poweful tods for the maripulation of characters,
and open up wide areas of non-rumerica computing through Fortran. Lots of
text formatting and word processng applications may now be tackied (conven
iently ignaring thefact that lower case characters may notbe available).

Remembe tha any functions you write which retum character results must be
explicitly dedared as charader type on the fundion staenent, e.g.

CHARACTER FUNCTION OMEGA(A,B)
CHARACTER OMEGA*10, A*5, B*5

OMEGA=A/IB

END

Chapter 17 Characters 155

Justto shav how you might wish to usea chaacter variable which is given a
variable length, the previousexample might be re-written

CHARACTER FUNCTION OMEGA(A,B)
CHARACTER*10 OMEGA
CHARACTER *(*) AB

INTEGER LA,LB

LA=LEN(A)
LB=LEN(B)
IF(LA+LB.LE.10) THEN
OMEGA=A//B
ELSE
OMEGA="TOO LONG'
ENDIF

END
The statement
CHARACTER *(*) A,B

indicates tha we do nat know thelengths of A ard B, athoughthey will have
been sd in the calling routing(s). Note the strange syrtax here, where the sec-
ondaseilisk mustbe contained within brackets. The fundion also uses the LEN
function, just to filter out thoseoccasions where the combinad length of the
stringsA ard B is greater than 10.

Example

Onecornvenient applicaion of character variables is in creaing simple graphsat
the terminal. These can never be very acaurate, but they can be quick and infor-
matve.

PROGRAM DIAGRM
REAL X,Y XMIN,YMIN,XMAX,YMAX XW,YW
DIMENSION X(10),Y(10)
INTEGER IILEN,JLEN,N, IPOS, JPOS
CHARACTER*40 DIAG(20)
PARAMETER (ILEN=20,JLEN=40)
OPEN(UNIT=6,FILE='OUTPUT’)

C GETTING THE DATA IN
WRITE(UNIT=6,FMT=104)
READ *N
WRITE(UNIT=6,FMT=101) N
READ *,(X(1),Y(1),1=1,N)
WRITE(UNIT=6,FMT=102)
READ * XMIN,XMAX

156 Characters Chapter 17

WRITE(UNIT=6,FMT=103)
READ * YMIN,YMAX
C CALCULATING SCALING CONSTANTS
XW = (XMAX-XMIN)/(JLEN-1)
YW = (YMAX-YMIN)/(ILEN-1)
C INITIALISE THE CHARACTER STRING TO ALL BLANKS
DO 1 I=1,ILEN
DIAG(l)=""
1 CONTINUE
DO 2 I=1,N
JPOS=(X(I)-XMIN)/XW+1
IPOS=(Y(I)-YMIN)/YW+1
C ELIMINATING POINTS OUTSIDE THE DIAGRAM
IF(IPOS.LT.1.0R.IPOS.GT.ILEN)THEN
WRITE(UNIT=6,FMT=100) X(I),Y(l)
ELSEIF(JPOS.LT.1.0R.JPOS.GT.JLEN)THEN
WRITE(UNIT=6,FMT=100) X(I),Y(l)

ELSE
C THESE ARE INSIDE
DIAG(21-IPOS)(JPOS:JPOS)="*

ENDIF

2 CONTINUE

C NOW WRITE OUT THE COMPLETED DIAGRAM

DO 3 I=1,ILEN

WRITE(UNIT=6,FMT="(1X,”:",A)) DIAG(l)

3 CONTINUE

WRITE(UNIT=6,FMT="(1X,40("-"))")
100 FORMAT(POINT OUT OF RANGE ’,2F10.4)
101 FORMAT(GIVE ’,I5, PAIRS OF POINTS,X-VALUE,Y-VALUE’)
102 FORMAT(GIVE MAXIMUM AND MINIMUM FOR X-VALUES')
103 FORMAT(GIVE MAXIMUM AND MINIMUM FOR Y-VALUES')
104 FORMAT(GIVE NUMBER OF PAIRS FOR PLOTTING’)

END

Oneof the points to nate in this program is theway in which we make surethat
al the graph points lie within the plotting area. Trying to addresspoints outside
this area can poseproblemrs. Note aso that an x-axis and a y-axis are printed on
the plot.

Thee are many prodems tha require the use of charader variabes. These
rangefrom the ability to provide simple titles on reparts, or grgphical output, to
the provision of a naura language interface to oneof your prograns, i.e. the
provision of an English-like commard language. Sotware Tods, Kemighan
and Plauger contains many interesting uses of charactersin Fortran

Chapter 17 Characters 157

Summary

» Chaacters represent a different daa type to any other in Fortran, and as a
consguence there is a restricted rarge of operaions which may be carried out
onthem.

» A chaeacter variable has a length which must be assigredin a CHARACTER
declaration steement.

» Chaacter stiings are ddimited by apostrophes. Within a character string, the
blark is a significant character.

» Chaacter stiings may bejoined together (conctenaed with the// opeator.

» Sub-stings, occurring within character strings, may be aso be manipulated.
There are a number of fundionsespedally for use with characters — INDEX,
LEN, CHAR, ICHAR, LLE,LGE,LGT and LLT.

Problems
1. Suggst sone circumstanceswheare PRIME="" might be usédul.
2. Write a progam to write out the weights for the Fortran character set.

3. Usethe INDEX function in order to find thelocation of &l thestrings’IS’ in
the following daa;

IF A PROGRAMMER IS FOUND TO BE INDISPENSABLE, THE BEST
THING TO DO IS TO GET RID OF HIM AS QUICKLY AS POSSIBE.

4. Find the ‘middle’ chaacter in the following strings. Do you include blanks
as characters? Wha about puncudion?

PRACTICE IS THE BEST OF ALL INSTRUCTORS. EXPERIENCE IS A
DEAR TEACHER, BUT FOOLSWILL LEARN AT NO OTHER.

5. In English, the order of occurrence of the letters, from mostfrequent to least
is—

ET,AONRISHDLFCMUGY,PWB,VKX,JQ,Z

Use this informaton to examine the two files given in appendix B (ore is a
trarslation of the other) to see if this is true for these two extrads of text. The
seond text is in medevd Latin (c. 1320). Note that a fair amount of compres-
sion has been achieved by expressimgy the passage in Latin rather than modem
English. Does this provide a possibé model for informaion compressia?

6. A very common cyphe is the subsitution cyphe, where, for example, every
letter A is replaced by (say) an M, ewety B is replaced by (sa) a'Y, and soon.
These encyphered messayes can be broken by reference to the frequency of
occurrence of the letters (given in the previous question). Since we know that
(in English) E is the most commonly occaurring letter, we can assune tha the

158 Characters Chapter 17

mostcommaonly occurring letter in the encyphered message represens an E; we
then reped the proaess for the next most common and so on. Of course, these
correspordences may not be exact, since the message may not be long enoudh
to develop the frequendes fully. However, it may provide sufficient informaton
to break the cyphe. The file given in Appendix C contains an encoded mes-
sag. Bresk it. Clue— ‘Pg Fybdupwef jo Tdfodf,Jorge Luis Borges.

7. The simple graph plotting progam given in the chaper could be improved
by adding titles, by making the cdcuation of minima and maxima automatc,
and perhgos by identifying places where two paints fall on the same plotting
location. Try to implement sone of theseerhancements.

18

Subroutines

A man should keep his little attic stadked with all the furniture heis likdy to
use and put the rest away in the lumbe room of his library, where he can get
it if he wants.

St Arthur ConanDoyle, Five Orange Pips.
Aims

The aims of this chepter are—

e to introdwce anothe way of bresking prodems down into small
sdf-contained pieces

* toillustat theuseof sulrouines
* tointrodwethe idea of alibrary of subrouines

* to make you aware of the expettise tha you can drawv on and the
time you can save by the useof thesesubroutine libraries

160 Subroutines Chapter 18

Intr odudion

You have adready seen how one can use fundions to hdp bresk a problem
down into manageale pieces. Fartran provides anothe more gereral way of
doing this using a SUBROUTINE.

The strudure is slightly different from that of a function,

SUBROUTINE MULT(X,Y,Z,FUN)
REAL X,Y,Z,FUN

FUN=X*Y**Z

END

and the reference is also slightly different.—

PROGRAM SIMPLE
REAL A2,A,B,C,FN,X

CALL MULT(A,B,C,FN)
A2=FN/X
END

Notes
1. Thetypeof MULT has no effect here.
2. The orde of the arguments is agan significant.

3. The names usal in the cdling routine have no effed in the sub-pogram A
variale A in the caling routine has no relationship whatsoever with a variae
A in the sulroutne or fundion.

4.We have to introdue a new variade (FN) to hold theresult.
5. We mustnotnaneany variades MULT. This will causegrest confusion.
6. To use the suboutine we CALL it.

The fourth condition (introdudion of the variable FN) is not restrictive, sine
we coud actudly write

PROGRAM SIMPLE
REAL A2,A,B,C,X
CALL MULT(A,B,C)
A2=C/X

END

Chapter 18 Subroutines 161

SUBROUTINE MULT(X,Y,Z)
REAL X,Y,Z

Z=X*Y**Z

END

While fundions must have at least one argument, sulroutnes can hawe ary
number, including none at all. We might ask whethe sud a routine would be
of any value. If you retum to exanine sone of the intrinsic functions, you may
recall tha some of tham coud take variable nunbers of argumerts. You cannot
write such fundionsin stardard Fortran.

Making subroutines (and functions) more general

Lets return to the funaionsfor finding the minimum and maxmum; these two
functions coud be combinedinto a single subraiting sud as

SUBROUTINE MINMAX(V,N,VMAX,VMIN)
REAL V,VMIN,VMAX
INTEGER I,N
DIMENSION V/(100)

VMIN=V(1)
VMAX=VMIN
DO 1 I=2,N
IF(V(1).GT.VMAX) THEN
VMAX=V())
ELSEIF(V(]).LT.VMIN) THEN
VMIN=V/())
ENDIF

1 CONTINUE

END

To usethis sub-pogram we usethe staement
CALL MINMAX(X,N,XMAX,XMIN)

whee XMAX and XMIN are theresuls, and the other arguments are asbefore.
When you usesubroutines more extensively, you will begin to discover that it
is irritating to hawve to dimensim arrays to a fixed amountin the subrouting as
in

REAL X,SUM
DIMENSION X(100)

CALL ADD(X,SUM)

END

SUBROUTINE ADD(A, TOTAL)
REAL A, TOTAL

DIMENSION A(100)
INTEGER |

162 Subroutines Chapter 18

TOTAL=0.0
DO 1 1=1,100
TOTAL=TOTAL+A())
1 CONTINUE
END

The argurmrent X is an aray dimensioredto 100 in the calling routing and is
agan dimersioned to 100in the subraitine This is not vely gened, and there
are ways in which the suboutine can be made more flexible. It is possible to
dimension the array to an aitrary length N, as longas N does not exceed the
size of theequivdent array in the caling routine, e g.

REAL X,SUM
DIMENSION X(100)
CALL ADD(X,SUM,100)

SUBROUTINE ADD(A, TOTAL,N)
REAL A TOTAL

INTEGER N

DIMENSION A(N)

TOTAL=0.0

DO 1 I=1,N

We have acquired an extra argumert, but incressel the swmpe of the routine
greatly, since we may now useit in othe situaions,such as

DIMENSION X(100),Y(10),Z(50)

CALL ADD(X,XSUM,100)

CALL ADD(Y,YSUM,10)

CALL ADD(Z,ZSUM,50)

etc
The routine we began with could not have handled this ‘adjustdle’ array size
and would have plodded away to 100 each time. Although we discussel sub
prograns ealier in terms of avoiding duplication, you can see that the
similarity beween the seqience of events need nat be exact. The problem
stated out as ‘add 100 numbers togetha’, but ended up as ‘add N nunbes

togeha’. Of caurse the argument on the CALL which deermines the aray
length in the subrautine need not be a number, but could be a variable, asin:—

Chapter 18 Subroutines 163

NX=100

NY=10

CALL ADD(X,XSUM,NX)
CALL ADD(Y,YSUM,NY)

It is importart to notice tha we may only use this technique when space has
aready been dlocated for the arrays. A strudurelike

SUBROUTINE ADD2(X,Y,N)
REAL X,Y,Z
INTEGER I,N
DIMENSION X(N),Y(N),Z(N)
DO 1 I=1,N
Z(H=X(1)+Y ()
1 CONTINUE

is nat pemitted since Z is not an argument of the suboutine and has had no
dimension asso@ted with it to se aside space for its contents. The setting aside
of spae is accomplished at compile time, while this routine would expect Z to
be sd¢ up a runtime (‘dynanicdly’). Essentially, Fortran is a staic languaye
which sds asideall space required at the stage before running.

Similarly, you cannot inaease the size of an array beyond the limit it was
origindly givenin the DIMENSION staemnent.

It is often the case tha we wish to manipulate arrays and for example, join
themtogeher to make larger entities. We might have two vectors, A (of length
100 and B (of length 50), which we wish to join together to form C (of length
150. If we genegdise this to make A of lergth M ard B of lergth N, the length
of C will become M+N. Unfortunaely, Fortran does nat pemit a DIMENSION
staement to have an argument like M+N in a sub-program. It does however
permit the useof the asterisk to take care of situaionslike this.

SUBROUTINE JOIN(A,M,B,N,C)
REAL A,B,C
INTEGER |,M,N
DIMENSION A(M),B(N),C(*)
DO 1 I=1,M
Ch=A()
1 CONTINUE
DO 2 I=1,N
C(+M)=B())
2 CONTINUE
END

Again, C musthave been dimensianed large enoudh in the calling routine.

One of the prodems of usirg subraitines with variade length arrays stens
from the way in which Fortran ‘*holds’ or stores arrays in memory. The aray is

164 Subroutines Chapter 18

not hdd as a two (three, ... n) dimensioral strudure, but as a vector. This
implies tha a generd structure like

DIMENSION X(20,20)

CALL SUB1(X,10)
CALL SUB1(X,15)
CALL SUB1(X,16)

END
SUBROUTINE SUBL(AN)
DIMENSION A(N,N)

will not work. The aray carried into the sulroutine will not be a ten by ten
matrix, then afifteen by fifteen, and soon The aray will be staed as a singe
vector, taken column-wise from the twenty by twerty array. To get arourd this
prablem, we musttake the ‘trué dimersion of thearmay into the suboutine;

CALL SUB1(X,20,10)

END
SUBROUTINE SUB1(A,LENGTH,N)
DIMENSION A(LENGTH,LENGTH)

An dternaive mechanism, which avoids usirg some of the extra arguments, is
throuch the use of the asteisk. The asterisk may be usel in place of the last
dimension of the array:

DIMENSION B(20,10)
N=20

CALL SUB2(B,N)

END

SUBROUTINE SUB2(C,M)
DIMENSION A(M,*)

This will really only be useful for ‘rectangular’ arrays, i.e. where the maximum
dimension bowndsare nat the same

The aselisk aso bemmes more vauable in its usewith chaacters. Wheniit is
necessay to take charader strings into subraitines, we may have situaions
where we do not know the stiing lergths. Of course,we could have usal the
LEN fundion to find out, butwe may also usesonething like

SUBROUTINE STRING(X)
CHARACTER*(*) X
PRINT*,X

Chapter 18 Subroutines 165

Note the useof the bradets around the asteisk, which indicates the adustalle
bound.

Subpouines may cdl othe subraitines, but not reaursively. If you don't know
wha recursion is, youwon't even notice.

Example

Soling sds of simultaneous equations can be progranmed fairly readly, espe
cially using a tecdhnique known as Gaussan eimination; essentialy this is the
sane mehod tha you would use (perhgps dmost intuitively) to solve for one
term, ard then ‘badk subsitute.

SUBROUTINE SOLVE(A,B,N,X)
INTEGER J,K,L,N
REAL A,B,X
DIMENSION A(N,N),B(N),X(N)
C
C SOLVES A SET OF N SIMULTANEOUS EQUATIONS, OF THE FORM
C A(LL*X(1) + A(L,2)*X(2) + A1L,3)*X(3) ... = B(1)
C AQR,1)*X(1) + AR,2)*X(2) + A2,3)*X(3) ... = B(2)
C
C ANN,1)*X(L) + AN, 2)*X(2) + AN,3)*X(3) = B(N)
C
C INPUT
C THE MATRIX A CONTAINS THE COEFFICIENTS ON THE LHS
C THE VECTOR B CONTAINS THE VALUES ON THE RHS
C OUTPUT
C THE VECTOR X RETURNS THE VALUES AS ABOVE
C NOE THAT THE CONTENTS OF A AND B ARE CHANGED
C
DO 1 K=1,N
DO 2 J=K+1,N
Y=-A@J,K)AK,K)
DO 3 L=K,N
AQ,L=AJ,L)+Y*AK,L)
3 CONTINUE
B(J)=B(J)+Y*B(K)
2 CONTINUE
1 CONTINUE
C START THE BACK SUBSTITUTION
X(N)=B(NY/A(N,N)
DO 4 J=N-1,1,-1

Y=B(J)
DO 5 K=J+1,N
Y=Y-AQJ,K)*X(K)
5 CONTINUE
X(3)=Y/A@J,J)
4 CONTINUE

END

166 Subroutines Chapter 18

It mustbe nated that althoughthis methad is easy to programit can be numeri-
cally unstale in the presence of roundng errors. Gaussia elimination should
therefore only be peformed with pivots. Rdston and Rabinowitz provides fur-
ther information for theinteresedreale.

Available subroutine libraries

One reason we suggestad for usirg sub-pograns was to avoid duplication.
Very often, paits of the problems we wish to takle have already been solved
by others. There seemsllittle point in re- inverting the wheel if we can usethe
acaumulated knowledgeand expertise of other whed-wrights.

Theae are a numbea of ‘libraries’ of routines available which will allow access
to this pool of expettise.

One notable libraty, available in al British Universities, is the NAG, or Nu-
merical Algorithms Group, library. This is a collection of literdly hundeds of
routines (sorre are fundions,sone are subrouines), al of which may be called
from a Fortran progran. The gened sedion headings are given Apperdix D,
and indicate the areas which are currertly available. The NAG library contains
agreat many rouines, arrarged in sone kind of usdul way. A good prodem to
solve, to prove you can program, is aranging real numbe's in orde, eithe
ascending or desending. It is not too difficult to do this, but doing it effi-
ciently, either in terms of time or siorage, is a problem which has taxed mary
minds, and the NAG library contains a variety of rouines to do this wel eg.
routine MO1CAF, which may be used in thefollowing way:

PROGRAM NAGEX1
REAL A

INTEGER IFAILN

DIMENSION A(10)

N=10

IFAIL=0

READ *A

CALL MO1CAF(A,N, DESCENDING',IFAIL))
PRINT *,A

END

This takesa vector A of length 10, and sorts it into des@nding order. Within a
program, useof a NAG routineis the sanme asany other subrouine or fundion.

Note tha the name of the sub-pogramis a little strange and is not the friendly
mnemonic which we might expect. Howewer, there is a goad reason for this.
Thefirst two letters indicate the chapter in the manud; the next two digits are a
reference within the chapter; the next two letters idertify the paticular subpro-
gram, while the last letter (F) indicates the languaye (Fortran). The form of the
name is close to the standard naming procedure usel by the Assogation for
Conpuing Madhinegy (ACM), CERN (European Organisaton for Nudear Re

Chapter 18 Subroutines 167

seach) etc., ard is termed the ‘modified SHARE inde<. When using subrou
tinelibraries, it is likely that you will have to alocate sorre work-space for the
rouines. In this exanple the algorithm usel is very fast and requires no extra
spae thoughfor mostroutinesyou do. The size of thesearrays is degermined
by the size of the othe arrays which actually storethedaa and results.

Most sulroutine libraries have an error parameer of sorre description. We will
discussthe onetha NAG provide to give a concrete idea of the useof a pa
rameter like this. It is cdled the IFAIL parameter. For most routines the IFAIL
paameter has two purposes:-

* (i) to alow you to spedfy the action to be taken if an eror is
deteded

and
* (i) toinformyou of the successor failure of theroutine

Thusfor (i), you mustassign avaueto IFAIL before entering the rouine. Note
that IFAIL is rese by the routing so you camot pass a vaue, but must usea
varialdle nane which has previously been given a value. You may sé ethe a
‘hard fail option’, or a ‘soft fail opton’. Hard fail (sdting IFAIL to zero) in-
structs the program to teminate if an error is detected and an appropriate error
messge is printed togeher with the vaue of IFAIL; soft fail (IFAIL=1) in-
structs the routine to ‘recove’, and return to the caling routine — the value
given to IFAIL on returning will reflect the nature of the error. If you sdect the
soft fail opton, a sucessfu call woud be represented by an IFAIL vaue of
zer. If you usethe soft fail, you musttest the vaue of IFAIL, or an error may
go unddeded and your sulsequert resuts may be susped. This is not needed
if the ‘soft fail’, (IFAIL=-1) option is taken because an eror messag will be
printed before recovering.

NAG have a policy of continuaus improvement of ther algorithms, and make
changes from version to version. In theory, each new version will contain the
elements of the previous ores. Extensive doaumentdion is availale for this
library.

Plotting

Another important areawhich is usually addressed through libraries is the ex-
tension of Fortran to output devices like grgphics terminds, Tekironix display
units, or pen plotters. You probably have accessto some sortof plotting device
These may be controlled throwgh Fortran programs which use suboutine librar-
ies like UNIRAS, NAG Grgphics or sonething similar. We will only describe a
very simple conceptud plotter here.

First, assumetha there is a nation of posiion; the pen (or light beam, or what-
ever is creding the ‘vector) hasa positon. Seondly, when the penis moved,

168 Subroutines Chapter 18

we may eithe move with the pen down (whena line woud be dravn), or with
the pen up (when no line woud be made); at the end of a movement, the pen
has a new posiion. The next movement will be made from this position to the
next ‘new’ one A possible subrautine cdl would be

CALL PLOT(X1,Y1,LINE)

where X1 and Y1 are the cattesian co-odinates of the ‘next’ point — the one
to which the penwill move By definition the pen drealy has a position from
which to move. The varialle LINE spedfies wheher a line is being dravn or
not (pethaps a logical or integer varialde). With this powe to move, to creste
lines or nat, very be very mary more subraitines then this movemert primitive
in a plotting library. They will allow you to write text (for titling information),
write numbes (for axis saing), drav dl sors of symbds (for graphs), ard
much more.

Algorithm libraries

Another way in which you can draw on the expettise of others is by the use of
pulished algorithms. Oneof the best knownis the one published by the Asso-
ciation for Computing Machiney and often called TOMS (for Trarsactions on
Mathematicd Software). This library may well be available in madinereadcalde
form at your site.

Summary

* Onekey way of making programs more modular is throughthe useof sub
routines, where a single task, or group of related tasksmay betackled.

* Subroutinesare invoked differertly from fundions. They are CALLed; how-
ever the sane nationsof communication throughthe argument list applies. The
name of the suboutine does not return avalue and is usel merely as a conven
ient mnenonic.

» Subpouines usingarays may be made more genad by pemitting the arrays
to teke vaiiable length bounds; this applies only to arrays which appear in the
argurrent list. Arrays may be dimersioneal to an integer variable, which is also
an argumert, or to an asteisk. Only the last array bound may be given the
value astaisk.

» Thee is no restriction on the numbe of argumerts to a sulkroutine, and the
appaent type of the name has no relevance.

» Subrautine libraries are widely available and pemit use of the expertise of
others. Sud libraiies also allow aaess to more spedalised inpu and output
devices.

» Thee are also mary pulished algorithms which provide a bask for speial-
ised subrautines and fundions.

Chapter 18 Subroutines 169

Problems

1. Find the eilgen-vdues of the following matrix. You dorit even have to know
wha eigenvauesare to do this one

5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

2. Write a sub-pogram to concaterate the charader vedor A ard the character
vector B, leaving a space baween them. Placethe resuk in C. Is it genegd, ard
if not, wha are therestrictions?

3. The subrouine SOLVE contains sone defects; it will only sove N by N sds
of equdions, where N is the same vaue in the caling routine Canyou correct
this? Test the subouine on the following examples:

2x+ 3y+ 4z =11
6x+ 5y+10z =43
bx—-1ly+ 8z =20

and

2Xx+5y+3z-w =0
6x— y+ z+3w = 4
4x+ y—2z+3w=23
Ox+7y +0z—w =19

This last example reveds anather inadequacy of the suboutne. This may pro-
vide a godd charceto test out any facilities like ‘post-mortem dump’. Can you
solve the problem, or failing that, provide an error detection mechansm?

4. Many of the programs presented in this book could be written as sulrouines.
The plotting program in the previous chgpter could méeke a usdul subouine.
Turn it into a subouting, giving attention to the dimensians of the finishel
diagam. Large diagams are fine on line-printers, but awkward on small vdu
sceas, or ove very slow lines (30 characters pa seond). Take these consid
erationsinto acocount.

19

Files

It is a capital mistake to theaisebeore ore has data.

Sr Arthur ConanDoyle.

Aims

The aims of this chepter are—

to review the processof fil e creation at aterminal

to introdue more formally the idea of the file as a fundamental
entity

to shav how files can be declared explicitly by the OPEN ard
CLOSEstatemerts

to introdwe the arguments for the OPEN ard CLOSE staenents

to demonstate the intaaction beween the READ/WRITE state-
ments and the OPBN/CLOSE staements

Chapter 19 Files 171

Intr odudion

While you are working interactively, on a termind, you will be working with
files; files that contain prograns, files that contain daa, and pethgps files that
are libraies.Thefil e is fundamental to mostmodem timesharing opeating sys
tems, and aimostall opeations are caried outonfiles.

In this chgpte we are going to extend sonre of your idess about files. Let us
consicer what kinds of fil es you have met sofar:—

1) Text files. These are the source of your progams, docu-
merts, repoits etc. They can be examinad by printing them
They can dso be transnitted round a computer systen fairly
easly. A file sent to a printer is a text file.

2) Data files. Theseare genedly a variation on 1. They can
be printed in much the same way as atext file.

3) Binary, object or rdocaalle files. Typicaly thesewill be
the output from a compiler. They camot be printed. To exam-
ine fil es like theseyou need to use speial utilities, provided
by mostoperating systems.

The above categaries accourt for the mgority of filesthatyou have met so far.

Let us now conside how we can manipulate files using Fortran. They will
genedly be daa fil es, and will thus be text files. They cantherefore be listed
etc., using standad operating systen commands.

Filesin Fortran

These allow usto assodate a logical unit nunbe with any arbitraty file name
during therunring of the program, e.g.

OPEN(UNIT=1,FILE='DATA")
would assogate thename DATA and thelogical unit 1, sotha
READ(UNIT=1,FMT=100) X

would read from DATA. Note tha for this to work on sone opeating sysens
the file DATA musthave been ‘local’ to the sessino; we speify the nane asa
chaacter vaiiable. If we then warted to use a sutsequert dda file, we could
have anather OPEN staement, but if we want to use the sane logicd unit
nunber, we mustfirst CLOSE the file.

CLOSE(UNIT=1,FILE='"DATA)
beore we

OPEN(UNIT=1,FILE='DATA2’)

172 Files Chapter 19

In this way we can keep referring to logicd unit 1, but change the file assod-
ated with it. This can be usetfll in inteactive programs where we wish to
andysedifferent sds of daia, eg.

PROGRAM FLEX
REAL X
CHARACTER*7 WHICH
OPEN(UNIT=5,FILE="INPUT’)

1 WRITE(UNIT=6,FMT="(" DATA SET NAME, OR END”))
READ(UNIT=5FMT="(A)’) WHICH
IF(WHICH.EQ.END’) STOP
OPEN(UNIT=1,FILE=WHICH)
READ(UNIT=1,FMT=100) X

CLOSE(UNIT=1,FILE=WHICH)
GO TO1
END

This last example aso introduces the STOP siatement. We have drealy en
counered RETURN in fundions, where they provide the potentia for dtemae
exits from the sub-program. In a main progran, RETURN is obviously ingppro
priate, but we may still require termination of the prooess at locations other
thanthe END. The STOP staenment may be employed, sinee it has the effect of
terminaing the progran (wheever it ooccus). The STOP statemert may be
placd in subprograms, where it will alsoterminate the progam.

One usdul feature of the OPEN staement is tha there are other paraneters.
What would happen, for example, if the file was not there? To take care of this
you can usethe ERR=and STATUS=keywords.

OPEN(UNIT=1,FILE='"DATA’,ERR=10,STATUS="0OLD’)

If an error occurs during the attempt to openthe fil e, control will transfe to the
staement labdled 10. It is not sufficient tha we useonly the ERR=keyword in
order to trap the absence of a file. We must aso use the STATUS paameter.
STATUS can be equated to ore of four vaues,

STATUS='OLD’
STATUS='NEW’
STATUS='SCRATCH’
STATUS="UNKNOWN’

If we useSTATUS=0LD’ and thefile is not present, this will causean error
condtion and control will passto whichewer labd is equaed to ERR; if we say
STATUS=NEW’, we are creating a new file and it should not matter whethe a
file of the sane name is presaat; 'SCRATCH’ does not concern us, while "UN-
KNOWN' implies tha, if a file of the corred name is present useit, if not

Chapter 19 Files 173

create a'NEW one If you omit the STATUS= keyword atogeher, the value
'UNKNOWN’ will beassuned.

OPEN(UNIT=1,FILE='"DATA’,ERR=10,STATUS="OLD’)
READ(UNIT=1,FMT=100) X

STOP

10 WRITE(UNIT=6,FMT=200) DATA
200 FORMAT(Error in opening file, ,A)
END

Althowgh this ERR=is rather like a GOTO, it is much more restricted, in tha it
is only availade when an error occurs.

Summary of options on OPEN

UNIT The unit numbe of the file to be opered

IOSTAT Integer vaiiable given the value zero if there are no errors.

ERR In the evert of an error control is trarsfered to the staement with this
labd.

FILE Chaacter expressionspeifying thefile name
STATUS Chaacter expression speifying the file stdus. It can be one
of' OLD’, 'NEW’, 'SCRATCH'orUNKNOWN'.

ACCESS Chaacter expressim speifying wheher the file is to be used in a
sequentia or random fashion. Valid values are¢ SEQUENTIAL’ (the default), or
'RANDOM'.

FORM Chaacter expressim spedfying oneof.—
‘FORMATTED’ if thefile is opened for formatted i/o.
'UNFORMATTHED' if thefile is operedfor unformettedi/o.

'BUFFERED’ if thefile is opered for buffered i/o.

The default is formated for sequential access files and unformetted for direct
accessfiles.If thefile exists, FORM mustbe consistat with its present charac-
teristics.

RECL Integer variable or constant speifying the record length for a direct
accessfile. It is speified in charaders for a formated file, and words for an
unformettedfile.

BLANK Chaacter expressiam having oneof the following vaues:—

'NULL’ if blarks are to be ignored on readng. Note tha a
field of al blanksis treated asO!

174 Files Chapter 19

'"ZERQO’ if blanksare to betreated as zeros.

Sorre of the terms on the OPEN staement will be strange. We have introduced
terms like ‘unformatted’, ‘dired access’, ‘sequential’, ‘rardom ard ‘buffered
withou explaraton. Theseterms are induded for completeness and it is prob
able that you will never needto use thefacilities they provide All file handling
desciibed in this book concerns seqiential formated files (the default typé).

Summary
» Thefile is afundamental ertity within the operating system.

* Files may be manipulated in Fortran by assodating thar name with a unit
nunber. All subsguent communication within the program is through the unit
nunmber.

* When afile is operedthere are a large number of equaale keywords which
may be employed to establish its characteristics.

* The ddault fil e type usel in Fortran is sequertial formated, but se\eral other
esoteric types may beused

Problems

1. Write a progam to write the first 500 intege's to a file using formatted i/o.
Put 10 values on a line, with a blank as the first charader of the ling and 8
columns alowed for each integer, with two spaes baween each integer field.

Now write a program to real this file into an array, and write the nunbers in
reverseorder over the origind data. i.e the daa file now contains the first 500
numbersin desending order.

Now madify the first progran to add the next 500 intege's to the same file, so
that the file now comprises the first 500 numbers in desending order, and the
next 500 nunbe's in ascerding orde.

2. To write and mantan a crude data base of student details, we might do the
following; creae semrat files for each year — CLAS1, CLAS2, CLASS, or
COF84 COF&, COF86,and soon. In eithe casethere is an undanging pre-
fix, CLAS or COF, and a variable suffix, which identifies membership within
the overal groy. On each of the files we may wish to record ddails like;
name, dae of birth, address, coursestaken, etc. Sud fileswill require updating
as details change, or aserrors are noted. Write (or skech out) a program which
would seled and maintain such records, ard which would alow corrected files
to be printad out. While you might fed tha the most appropriate tool for this
job is an editor, you might find this too poweful a tod. An edtor can leave
files in a sorry state. Naturaly, any program like this shaild be hdpful (so
called ‘use frierdly’). Is this sort of information sersitive erough to require
sealrity cheds and passwvords?

20

Common ard datastatenents

If we do not find anything pleasant
at leastwe shall find soméhing new.

Voltaire, Candde
Aims

The aims of this chepter are—

* to introduce arother way of providing communication beween
program, sulrouinesand functions

* to showhow this mechanism can be useal to enforce structure on
the program

* tointrodwea convenient mechanism for initialising data

176 Common and Data Statements Chapter 20

Intr odudion

The communication beween subprograns has been so far through the argu-
mert list,eg.

FUNCTION EVALUE(X,Y)
or
SUBROUTINE SOLVE(A,B,N,C)

There is one othe way of shaing data beween subprograns — through the
COMMON block.

A COMMON blo is dedared together with ary othe dedaratve statemerts
at the beginning of the sub-program, eg.

PROGRAM EXAMPLE
REAL X

DIMENSION X(100)
COMMON X

END

SUBROUTINE PASS1
REAL 'Y

DIMENSION Y(100)
COMMON Y

END

This has the effed of allowing the data stored in array X in the man progran
segnent to be usedas array Y in the sulyoutne. This paticular form of the
COMMON is known as ‘blank’” COMMON, since the common block has not
been given a name We can assgn names to common blocks, so that we can
distinguish them essily, e.g.

COMMON /A/ X(100)
COMMON /XRAY/ Y(20),B(30),Z
COMMON /HEAT/ A(25)

and soon. We may aso write a blank common block as:
COMMON // XARRAY(25)

The name of a common block is only restricted in the sensetha it must have
no more than 6 aphawuneric characters. There is no concept of typing with
common block names, and you may have dl soits of data types in the one
common blodk, with one exception! If any character variable or character aray

Chapter 20 Common and Data Statements 177

is included in a common block, thendl the entities in the block mustbe of type
chaacter.

The communication is effected throughthe sequerce of the variables: a section
of memary is setasde sothat, for example:—

COMMON /DATA1/A(50),B(50)

seb aside 100 locations to a common block called DATAL1. When DATAL is
declared in asub-pogram those 100locationsare avail able:

COMMON /DATAL/X(10),Y(10),Z(80)

The first ten locdions (from vector A in the caling routing), are usale in the
array named X, the next tenin the array Y ard so on. The fact tha these had
different desciptionsin thecdling routineis of no sigrificarceto Fortran

Although we may redefine the ‘struduré of the common we mustna redefine
its length. Once a named common block hasbeen setup, each reference to it in
a subprogram mustbe of tha size. This does nat apply to blank common.

We must be careful with common blocks, espesially when we note that any-
thing in a naned common blodk may become unddined whenwe exit or leave
asubprogram using END or RETURN, unlesswe usethe SAVE declaration.

Essentially, this would orly apply to the case where we retum to a routine
which does nat have the naned common blod in it; conside the following=

PROGRAM ANALYS

COMMON /B/ X(100)
SUBROUTINE PASS1 SUBROUTINE COMPUT
COMMON /A/ 1,JK COMMON /B/ Z(100)
COMMON /B/ Y(100)

SUBROUTINE PASS?2
COMMON //A/ LM\l

178 Common and Data Statements Chapter 20

Progam ANALYS hes ‘calls’ to the suboutines PASSlard
COMPUT, ard PASS1has a‘cdl’ to suboutine PASS2 This
is summaiseddiagranmaitcaly bdow:—

The common block B is sak. It is in the main progam, sowe never returnto a
routine which does not contain it. But, although subrouines PASS1and PASS2
can usethe common blodk A, when eventually PASS1conpletes its action ard
returns control to the main routing, i.e to progran ANALYS, the entire com-
mon blodk A bemmes unddinad, so that if the progran shoud cal PASS1
agan, thosevaues woud beunavailable.

The SAVE staenent is a declarative statement which may be usedto retain the
vauesin thecommon block;

SUBROUTINE PASS1
COMMON /A/B(100),C(25),L,J,K
SAVE /A/

would have the effect of retaining the valuesof any variables in common block
A when we return to the main program. If we usedPASS1again, the vaues
would be available.

In fact, SAVE is more gereral still, we may useit to retain the values of arrays
and variables when a return takes place othewise the values would bemme
uncefined.

DIMENSION X(100)
SAVE X,A,B

would retain the valuesof the array X and the two simple variables.

It is sensilde to put variales tha are related into the sane common blod, ard
to choosea meaningfu name.

COMMON is aso often usedwith anothe impartant declaration — the DATA
staement. The DATA staenent is usal to provide initial vaues for variables
and arrays; e.g.

DATA COEFF1 /10.382/

This value of COBFFL1is set up at compile time. It is even more flexible, sine
we can initialisewhde arrays in a vely simple way;

DIMENSION X(100)
DATA X/100*0.0/

This is a form of the implied DO loop. DATA alows usto initialise arrays or
simple variables. Variables in DATA statemerts are only initialised onee —
eithe whenthe progran is compiled or whenthe progam is loaded, deperding

Chapter 20 Common and Data Statements 179

on the sysem that you work on. Thus,the DATA staement is not exeautable,
unlike the assigiment statemert. You may initialise charader stings thus

CHARACTER STR1*6, STR2*3
DATA STR1/ABCDEF'/
DATA STR2/'ABC’/

Now, you might think tha it woud be very usdul to combine DATA ard
COMMON staementstogether, sotha you could do soneting like:

COMMON /COEFF1/COEFF1
DATA COEFF1/10.382/

but this can only be done in one speial program segment — the BLOCK
DATA subprogram, and only for naned COMMON:

BLOCK DATA SETUP
COMMON /CAT/X,Y .Z
COMMON /DOG/L
DATA X,Y/1.0,2.0/
DATA Z,L/201.23,3/
END

Note that we can initialise any variables that occur in a namel COMMON
staement, but only in this spedal sub-gogram which contains no RETURN or
STOP staement. This routine is never executed. It is never CALLed or refer-
enced directly in the rest of the program. It is usal only a compile time to
initialise,and it is not usedat run time at all. You may have severad BLOCK
DATA subprogams, each with a differert nane If you have only one it ned
nothave aname at all.

COMMON and SAVE are declarative staements, and therefore join the other
declaratives at the ‘begnning of the sub-progran. DATA bdongsto a post
declaration, pre-exeaution limbo, and may be sandwiched baween the two
groups. However, it does not matter where the DATA staement comes (pro-
vided it is not among the declarative speificaions). The DATA causes
initialisaton a the conmpile stage, as described alove and its paosition within
the execution staements is irrdlevant.

Summary
» Conmon blodks allow data to be shared between subprograms.

* Chaacter dda must bein its own common block.

* The COMMON dedaration merely sets aside a section of memary with an
idertifier (the COMMON blodk nane). You may accessthis section of menory
howerer you wishin other subprogams,throughthe COMMON block nane.

180 Common and Data Statements Chapter 20

* On return to a subprogram, the contents of a common block may bemme
uncefined. Blark common never becomes unddined within a progam. The
SAVE dedaraton will sakguad naned COMMON.

» Data may beinitialised in DATA stadements; these are not exeautable state-
merts, but are set up at‘load time

* You may not use the DATA staement to s up the contents of a COMMON
blodk, exceptin the BLOCK DATA sub-progran.

Problems

1. Write a programtha uses a DATA stadenent to initialise an integer variable.
This integer variable must be in a common blodk. The program shout contan
a main progam, blodk daa subprogram, and two sulroutnes. The man pro-
gram shoud print out the value of the integer variable initialised in the DATA
staement. Each of the two subroutines should also print out the vaue of this
sane variable. Each subrouine just prints out the vdue of the integer variable.
Themain programshout

* print out thevalue of the variable

» call suboutnel

* print out the value of the variable again.
» call suboutne2

* print out thevalue of the variable agan

Wha do you notice about the vaues printed out? Alter the variable to be of
type chaacter, and run the program again. You will neel to dter the DATA
staement also. Wha do you notice now?

2. Sone of the previous programs, subraitines and functions could bendfit from
usirg the DATA statement to initialise sone information. For example, the co-
effi cients of the Bessd function in the proddems in Chapter 12 could usefully
beinitialised in this way (either assimple variables, or asvectors in animplied
DO). Do this.

21

Optimisation
Wemaydefine our basicattitudeto optimizaton in two rules:

Rule 1: Don't doit.
Rule 2: Don't doiit yet.

M. A. Jackson, ‘Prindples of Program Design’
Aims

The aims of this chepter are—
* tointrodwesone reasonsfor NOT optimising a progran

» if thereasonsare not suffi cient then to showsomne ways in which
you can optimiseaprogam

182 Optimisation Chapter 21

Intr odudion

Optimisaion is rarely donefor the right reasons.As you are now aware, writ-
ing programs is not easy, and re-writing a program in suc a way asto make it
‘faste’, but less easy to comprehend, is dargerous. This is because finding
bugs in the program will now become much harder, and any time ganed by a
shorening of the computer's time will be more than offset by extra effort on
you part.

The first thing to consider is whether the soluion to the problem is the most
apprgoriate. Soretimes this is not that obvious. Corsider the case of a physidst
and mechanica ergineg approahing the problem of designing a combustion
engine independently of one arother. There will be knowledge at the disposal
of the physicist tha is not at the disposal of the erginee ard vice versa.Each
will solve the problem in a differert way and ndthe is ‘correct’; both are
appraoriate depending on the exact requirements of the prablem. So there may
be a more appropriate way of sohing the prodem. The thing to conside is
whether the prablem can be solved in arother way. Human bengs are very
reluctant to throw away somehing tha they have doneard start again. You
mustforceyoursef to do this if circumstances demend it.

Assuming tha you do not have to redesign the whole solution, the next thing to
do is find out where in your progran most time is speit. There shoutl be
prdfiling tools available to give you sone idea hee. Laking adequate tods
oneshould make an educated guess.Note tha, this guessmay be totdly erro-
neous,ard, if you are not sure, then obtain sone hdp.

It may turn out at this stage tha the progam sperds most of its time in the
Fortran run time systems or in opeating systens routines. If this is the case,
you have two options; firstly to abandon the project, or secondly consider how
you can improwe on the Fortran run time library, or opaating sysem This is
not an easy task. You may well have to leam a consideable amount about an
area which is completely unrdated to your prablem.

Let us assune now tha we have identified the prodem asbeng in you pro-
gram. Wha do we do next?

Sorre of the ‘improvements’ relate to the strudure of the computer, but a few
are sufiiciertly gened thatthey shoud bebomein mind when progranming:

* diminae redundant instrictions and expressions within state-
ments,and within sequences of statemerts

» evduae loopinvaiart expressiors outside theloop

» whee a subsciptad varialle is usal severd times, equde it to a
temporary variabe

Chapter 21

Optimisation 183

Different operationstake different times on a computer. This table (from Heah
and Meek, 1979) gives sorme rough notions of the relative speeds of operatons:

Opedtion Rdative Exanple
speal
integer assignmert 1 =10
integer addition/suldraction 15 I+J
real assigimert 2 A=100
real add/suldract 3 A+B
real muitiply 5 A*B
intege to red 6 A=l
integer multiply 8 1*J
division 9 I/JA/B
exponentiate to integer 35 [**J
exponentiate to real 115 A**B
**B

This implies tha if you are interesed in making your progran efficient, you
shoutl, for example replace thefollowing opeaionsby theseothers.

Origind Replacement
20*X X+X
X/10.0 X*.1
X**2.0 X**2

or X*X

Similarly, redudng the nunmbes of opeations by introdwing temporay vari-
ables will aso have aneffed:

Z=XXY+HW/(XXY)*2 5

could be redaced by

XY=X*Y

Z=XY+W/XY**2.5

An even more striking example, which demonstates how a polynomial evalu-
ation can be done without any exponentiation, is the following:

184 Optimisation Chapter 21

Y=A(0)*X**5+A(1)*X**4+A(2)*X**3+A(3)*X**2+A(4)*X+A(5)
can be replaced by:
Y=((((A0)* X+A(L))*X+A(2))*X+A(3))* X +A(4)) X +A(5)
At acrude leve, simple remurseto algebracan simplify expressiors:
A=B*(E+F)-C*(E+F)+D*(E+F)
reduces to
A=(B-C+D)*(E+F)
when the common factor is removed

Remenbe tha you can sorretiimes make one DO loop do lots of things, ard
thus:

DO 1 1=1,100
A()=B(l)*C(1)+4.
1 CONTINUE
DO 2 J=1,100
D(J)=E(J)+5.
2 CONTINUE

is equivalent to, but not as fastas

DO 1 1=1,100
A()=B(l)*C(1)+4.
D()=E(I)+5.

1 CONTINUE

If you are using multi-dimensional arrays, write the DO loop referendng so
thatthe‘fi rst’ index varies first:

DIMENSION X(25,5,200,100)
DO 1 I1=1,100
DO 2 J=1,200
DO 3K=15
DO 4 L=1,25
X(L,K,J,1)=0.0
4 CONTINUE
3 CONTINUE
2 CONTINUE
1 CONTINUE

This relates to the way in which the aray is stored in the compute’s memary.
You might alsonote that ‘shott’” DO loopsare sorretimes not vely efficiert, ard
thatit would be better to rewtite

Chapter 21 Optimisation

DO 1 J=1N
DO 2 I=1,3
X(L9)=Y(1,9)+Z(3,1)
2 CONTINUE
1 CONTINUE

DO 1 J=1N
X(1,9)=Y(1,9)+Z(3,1)
X(2,9)=Y(2,9)+Z(3,2)
X(3,9)=Y(3,9)+Z(3,3)

1 CONTINUE

even thoughthis would take longe to write ot.

185

Sonetimes it is possble to restrudure the prablem slightly. In the following

example, theIF testis caried out every time roundtheloop

DO 1 1=1,100
IF(FLAG)THEN
A(N=B(1)-2.*C(l)
ELSE
A(h=B(1)+3.*D(l)
B(I)=X*D(l)
ENDIF
1 CONTINUE

we coud replacethis by

IF(FLAG)THEN
DO 1 1=1,100
A)=B(1)-2.*C(1)
1 CONTINUE
ELSE
DO 2 1=1,100
A()=B(1)+3.*D(l)
B()=x*D(I)
2 CONTINUE
ENDIF

In the latter case,the testis doneonly once.

The next example showshow the Fortran might be coded, straight from a se of

equaions:

186 Optimisation Chapter 21

DO 1 K=1,M
B(K)=0.0
DO 2 J=0,N-1
A(K)=A(K)+X(J)*COS(J*K*DELTAY)
B(K)=B(K)+X(J)*SIN(J*K*DELTAY)
2 CONTINUE
A(K)=A(K)*2./(N-1)
B(K)=B(K)*2./(N-1)
1 CONTINUE

With a little thoudht, this could have been rewritten as:

N1=N-1
C1=2./N1
DO 1 K=1,M
AK=0.0
BK=0.0
DO 2 J=0,N1
YJ=J*K*DELTAY
XJ=X(J)
AK=AK+XJ*COS(YJ)
BK=BK+XJ*SIN(YJ)

2 CONTINUE
A(K)=C1*AK
B(K)=C1*BK
1 CONTINUE

These are relatively minor improvemerts which can be made without the more
major invocation of eithe recurrence relationshps or an FFT (Fast Fourier
Transforn). In the first example there are 6*M*N+ 4*M mutiplications ard/or
divisions,while in theseond there are 4*M*N+ 2*M+ 1.

Summary

It may be tha one problem solution is computationdly mare effi cient than an
other, but human efficiency is aso important, and it is almost always beter to
beslow and ‘corred’ than effi cient and wrong. The computer is suppeed to be
working for you, nat you for the computer.

There are sonre simple rules which can be acdbpted which do not destroy the
comprehensiklity of the program steps, and will reap sone bendit, espesially
if they are incorporated at the earliest stages of progam developrrent.

Problems

1. Write a program to sort 5000 numbers. The numbers shoud be stored in an
array. Ore way of obtaning the 5000 nunbers is through a random number
generator. Most random number generators are meachine speeific, but you
shoutl have acess to one through Fortran. Likely nanes are RANF, RAND,

Chapter 21 Optimisation 187

RND ard soon. Othe macdine dependent fundionswill return central proces-
sor time used— this would provide an objective figure for ary optimisaton
you achiewe.

Now apply the guiddines for optimisation given in this chgpter. Wha differ-
ence do they make?

Now ge hadd of a bodk on soring and searching and useone of the recom-
merded algoiithms e.g. quick-sort Wha difference does this make? How much
time have you spent so far?

Now use one of the standad subrautine libraries available on youwr sysem
What improvement have you got now?

Now use the SORT padkage availade on your machine. Wha time did this
package take?

Wasit worth it?

2. Genaéting prime nunmbers is a favourite task for mary mathemneticians. The
Collected ACM Algorithms contain severd examples of progams which will
calculate the first k prime numbers (e.g. Algotithms 35, 310 and 311) If you
have accessto these algorithms, compare them and read the accomparying re-
marks. Essetially it appears that the running time to compute the first k primes
is of the orde k** n, where n may be as smdl as 1.35. If you do not have
acoess to the Cdleded ACM Algorithms, consult Knuth, Fundamerial Algo-
rithms,on the same sukject.

Now arswer thesequestions; why would you wish to create a table of thefirst
k primes more than once would it be easier (and more ‘efficient) to store the
table on fil e than to recculate it?

22

Prodem solving revisited

As it was, their judgenent was basel more on wishful thinking than on sourd
calculation of probabilities;

Thugydides, ‘The Pelopannesian War’

Aims

The aims of this chepter are to drav togethe somre of theideas tha have been
presented recarding prablem solving. As with many situaions where new con

cepts are involved some expeaience at a conaete leve is required before the
ideas really make sense

Chapter 22 Problem sohing revisited 189

Intr odudion

It should be obvious by now that the intelectud skills involved in program-
ming are not to be underestimated. Pat of the reasonliesin the naure of the
tasks tha we are asking the computer to paform. Theseare typicaly mary
orders of magnitudemare complex than the hunmen mind can peform unaided.
Pat of the reason lies with the staement of the problem solution in a program-
ming languaye

There are two thingsto consider here. Firstly we need hdp at the design staye
to geneate a possble solution, i.e. we need to adopt proven methods of work-
ing which will make the desgn stage easier. Sone of the methodstha we can
adopt have been refined over many yeas and go back to the Greesks, e.g. Ew
clid. Others will bemare recent and are developmerts basa on experience over
the last30 years of progranming.

Seondly we neel help a the coding stage to try and make our progranms more
easly uncerstandable. This is espeially impartant as the programs tha we
write g& more and more complex as the problems that we undertake beamme
more anbitious.

These two pats are intercomnected, ard shoull nat beregarded in isolation. We
ned to have an ideaabout both if we are to become prdficiert programmes.
Letus now conside each in turn.

Algorithms

The name dgorithm is derived from al-Khowarazmi, who was an Arab mahe
matcian who wrote a treatse on agebra around 830 AD. There are mary
definitions of agorithm to be found in computng books, but the one given at
the start of this bookis sufficiert for our purpcses. i.e. a seqience of opeations
that will solve pat or all of a problem. The next thing to conside istheway in
which we can bre& problems down into sequerces of opeations. A mare for-
mal disaussionon algoiithms can be foundin Korfhage Logc and Algorithms.

Abstraaion

The most powerful techniquetha we have at owr disposalis tha of alstraction.
This mears tha we can hide the complexity of wha we are doing by usirg a
term or phraselike ‘invert a matrix’ and concentrate on the result rathe than
how the action will be peformed This mears tha we are able to postpae the
fine deail of each st of the solution and concentrate on one aspect of a prob
lem at a time. The impartance of abstraction will beawme obvious when we
consicer the next sedions. You shoud drealy be familiar with the idea of
abstraction from your disdpline when you can use the results of someonés
work withou having to actudly undestand al aspeds of it. Further reading on
the subgct of abstraction can be foundin Dahl, Dijkstra and Hoare, Stuctured

190 Problem solving revisited Chapter 22

Programmirg; in Brinch-Hansen, Opeaating Systan Principles; ard in Wulf's
contibution in Currert Trendsin Programmirg Methodology.

Structur ed programming

The man concrns of strudured programming are firstly with the ways in
which we can reduce the complexity of a prodem and achiewe a solution, ard
seondly with the corredness of the soluion. As can be appredated from the
last section abstradion has an important contribuion to meke here. Let us con
side thefirst aim which is theredudion of the complexity of the problem.

This can be achieved by breaking the problem downinto parts. Most program-
mers oveestimate thar ability to copewith complexty. They often write large
monolthic programs with little apparert strucure This means that is diffi cult
to predct the action of the program or pats of the progran. Consicer the fol-
lowing, which is based on actud experience of the authors whilst working in an
advisory capadty.

We are trying to uncerstand a pat of a program let us say
sedion A. In the middle of section A there is a jump to an
other pat of the program, section B. So to undestand how
sedion A will work we needto examine section B. Thereis a
jump in section B to anothe pat of the progam, section C.
Now to predict how section A works we neadto find out how
both B and C work.

It should not beimagined tha the above is at al unusual. A program may grow
in complexity over severd months and may berequired to peform mary tasks
notin the origind dedfinition and desgn. Thuswhen we stat progamming we
must develop habits that will alow usto retain mastey in situdionslike this.
Letus now conside wha we cando conaetely to achieve this mastey.

Firstly we use our powes of abstradion to hide the complexity of what we are
trying to do. We do this by designing ard spedfying actions in genea temes,
and concentrate on the results of the adions rathe than the how of the actions.
We gradudly refine each of theseactions untl we are talking in terms of actual
‘codé. We structure our solution into smell pieces so tha we can s with
cettainty tha this section of code will do exadly what we want and no more
We will consicer thisin more detal in alater sedion paying paticular atention
to theimpect this has on strudures in progams.

Letus now consder how we caninsurethe correctness of our program. We can
achieve this by making owr prograns uncerstandable. We shaild aim to pro-
duce programs that bridge the ggp beween the sulject area spedfication, ard
the solution in a progranming larguage This is not easy, as a programming
language may have no adequae baseconstuds in many case. Thuswe must
create our own. Consde the problem of a payroll program where the rate of
pay is different on Satrday and Sunday. We have to represent the concept of

Chapter 22 Problem solving revisited 191

days of the week in terms of the types of variables a our disposé In Fortran
we may chooseintegers, in the rarge 1 to 7 say, or we could chocse characters,
and actually usethe strings‘Monday’ etc. to represert the days. Neither of the
above appraaches will stop us in the first case assignng a value of 8 to the
integer varialde, and an ingoprariate sting to the character varialde. Note in
the latter case that we may misspédl the sting and have ‘Mnoday’. The se\elity
of this prablem will vary with the progranming language tha you use Fortran
has only a few base types, and it is unreassondle, for example, to exped to
write large database applicatonsin thelanguaye Pasal, on the othe hand, will
allow you to define your own types of varialdes, and thusis suited for mary
applicationstha Fortran is not. Thusyou must be careful of the kind of prob
lem that you try to solve with a paticular progranming larguage It may be
quicker to learn anothe progamming language rather than force a solution in a
language tha was not desigred to cope with tha particular kind of problem
Remenbe tha we are trying to achieve as close a correspondence as possitbe
beween the problem and its solution in a progamming language. If we strive
for this then we will make fewer errors.

Let us now consicer wha we can do in practical terms to achieve the above
Firstly we can adopt a small set of progam control constuds. i.e. we work
with a sl sé of sequendng mecanisms.Theseforms are—

* seqiencesof operaions,or concaeraton
» dtemaives baween courses of actions

* loops,or repdition of staements

* seqentia flow

As aFortran program is sequential, this is satsfied fairly easly.

Alternatives

This has geneated consderable heat in the computing world. The divide is
beween the people who restrict themsdvesto proven forms, and the sdool
who want no restictions on the way they work. There is consicerade argument
in the‘red’ world abou theuseof crash hdmes when riding a motor-bike. We
leave you to drav your own condusions. Let us now consde sone of these
forms=

* ThelF THEN ENDIF constrict. This enables to choosea course
of action if necessay. Note tha we cortinue the sequential flow
after the exeaution of the if block.

e ThelF THEN ELSE constrwct. This alows usto choosebaween
two coursesof adion before continuing with the normal sequentia
flow.

192 Problem solving revisited Chapter 22

« The IF THEN ELSEIF constud. This allows us to chocse be
tween mary possble courses of action. This is soneimes given
the name a caseconstud — as we are choasing beween severd
Cases.

These are sufiiciert to hardle mostprablems.

Loops
Repdition can be hardled by three basic forms. Theseare—

e The WHILE constrict. This does not exist as a base create in
Fortran. Therefore we create it from more primitive forms. These
arethelF and GOTO.

« The REPEAT UNTIL constrict. Again this does nat exst in For
tran as a baseform. We must constud it also from the IF and
GOTO.

* The simple loop controlled by a couner or index. This is pro-
granmed in Fortran with aDO loop

The abowe are represantative of current thinking in progranming. It is possilbe
that othe's may be dewelopd in the future, but for the present it is recom
merded tha you restiict yoursédf to these.If there are revolutionaly constuds
and idess waiting to be discovered in the future you can be suretha you will
hear of themeventually.

Structurein data

So far we hawe only consdeed strudure in the program A program maripu-
latesdaa, and there is genegdly structureto thedaa To quote Wirth

Algorithms + data strictures = programs

Thus oneshould look to see wha strucure existsin the data. You are already
familiar with the array as a data strudure You have aso seen tha tables of
data existsin many problems. There are only a few data strucuresin Fortran,
but they are sufficient for a large number of applicaions. It may be necessay
in many problens to reduce the real daa strudure to onetha can be repre-
sented in the larguage we are using. The array is one of the most fundanmental
data strudures. It is genadly possble to transfam a daa strudure into sorre-
thing tha can be manipulated by an aray, e.g. vectors, lists, stacks etc. The
bibliography containsreferencesto severa bookswhich emphasisethis paint.

Top Down and Bottom Up

We are now in a posiion to consider thesetwo approaches. It shoud be appar-
ent tha top down design is gang to be of much more usethan botom up.

Chapter 22 Problem sohing revisited 193

However there will be instances where you have no idea where to start. Then
you consider wha you can do, and work backwardsto a possibé solution. This
techniquewill be familiar to sore readers as it is similar to a technique sone-
times usel in mathemaics, i.e. we work backwards from wha we want to
where we are. However thearalogy shaild not be streéchedtoo far.

Step wiserefinement

This term shoutl now mean sorrething. We usethis techniqueto work gradu-
aly towards a solution from the problem ddfinition. It is closely linked with the
ideaof top-down design

Modular programming

We achieve modulkrity in progranming in Fortran using functions and subrou

tines. Theseenable usto construd sds of actionsand we can put these actions
together to solve our problem. What has been missing so far in this chepter is

the way in which we alow the communication to take place between these
modules. This brings us to the concept of localisedaction. We are interested in

ensurig tha when we use a function or subroutine it will do what we wart ard

no more. Care must be taken therefore when designing fundions and subrou

tines sotha, whilst they are sufiiciertly gereral tha we can use tham in seeral

ways, we do na wart to make them so complex to use tha they may have
unsuspeted side effects. Furctions are invoked by nanme and communication is

genedly restictedto take place through its arguments. Subraitines pase a few

problems. Communication here can take place through arguments, and often

also through common blodks. To keep control of the complexty it is therefore
recommended tha the number of channds of communication is kept to a mini-

mum, to erale usto understand fully whatis hgppening.

Conduding remarks

There are a few drawkads in the abowe aproahes. The man ore is tha the
program rarely contains any informaion abou the decisiors that took place at
the design stage i.e. there is no informaton on the abstaction process, or what
went on whil st testing and debugging the program.

This can be a tremendots problem whenyou come to madify the program It is
therefore recommended tha you get into the habit of inseting comments into
the progam alout the design process This includes putting in comments about
errors in your thinking where relevant. You should also putin comments about
atemaives tha you rgected. This may enable you to dewvelop a better approach
the next time you tackle a problem It is the experience of the authors that
explicitly writing down your thinking, or even articulating it to arother person,
can be usal to great bendit in exposirg the flawsin your logic. This is espe

194 Problem solving revisited Chapter 22

cially true when you start progamming. Thus working in smell groupsat the
stat can have a profound impact on thetime spent programming.

Lasty, a pleawhich may go unheeded initially. Many people seeprogranming
as an extension of thar own persondity. Since the program is thar own crea-
tion, any criticism is se& as a pa'sona criticism. Try to riseabove this. If your
ego can be sgarated from your program, you will notonly find it easier to seek
and find advice, but you will also avoid ulcers, and keep friends. Your pro-
grams mightimprowe too. A criticism of your programis nota criticismof you.

23

Opeating systems
‘Mow your lawn, lady

James Blish, ‘Cities in Flight
Aims

The aims of this chepter are—

* to give a brief histoiica review of the development of operating
systens

» tonote theimpad of presert day opeaating systens on the process
of proglamdevelopment

* toglance a othe devdopmerts in compuing which are likely to
have an impact in thefuture on this process

196 Operating Systans Chapter 23

The operating systen

Most computer systens provide an operaing systen. These will vary consicer
ably from smal systems availade on pesona compuers (eg. MS/DOS,
PCDOS) through to very complex sysens available on mainframes (eg.
IBM’'s VM systen). The importance of the operating sysem should not be
uncerestmated. They grestly influence a usets view of a computer systen. The
pumpose of this chaper is to provide sone background information on the
changes tha have taken place ove the past 40 years with operaing systems.
The relevance of thisis tha opeating systems will change during the time that
you sperd computing, and thus is it is impaortant to have some perspedive on
thesedewelopments. Opeaating systems can hdp or hinde the task at hand, ard
it is important to ge the sysemto help you, and maximise your produdivity.
After all the computer is atool for your use.

The 194G

In the ealy days of computing there were no opeaing sysens. The use had
conmplete aacess to the whde of the machine This meant tha progammers
were involved in areas which were nothing to do with the problem tha they
were interesedin.

The 195G

As you may imagine this was not very satsfactory. The next developmert that
took place was the introdudion of bach opeating systens. The main impact
was tha the use was distanced from the machine. Greater useof an expersive
resour@ wasalso mace.

The 19606

The next development was multiprogranming. This enabled the computer to
have sewral jobs unde execution ard to switch between them as resouces
were available. Thus timeshaing soon became passible — uses coud now
communicate through a keyboad. This had a considerable impact on the pro-
gram development proess

The 196G to 1970s

This era sawthe developmert of large multi-purpcse opeating systens. They
had to be alle to copewith a wide variety of demarnds. The most famous was
the IBM System 360. Thar development represerted some of the most ambi-
tious programming projects ever undetaken. An amusing and instudive
discussim of the problens ercountered developing the IBM systen is given in
Brooks, The Mythica Man Morth. A lot was learned from the failures of the
developmert of these opeating sysenmns.

Chapter 23 Operating Systans 197

One natable success from this era wasthe UNIX sysem The development of
the UNIX system is a vely interesting way of approahing the design of an
opeaating systen. Furthe information on the UNIX systen canbe foundin the
references in the bibliography.

The 197Gs to today

The opeating sysens of this era are primaiily refinements and extensions to
the ones of the previous era. See Deitel, Opeating Systems, for more informa
tion on this subgct.

Other developments

Theae have been devdopments in othe areas of computing which have had
gregter use impact in this era. The four areasof mostinterest are—

» theavailability of cheap ard poweful microprocessors
» theinaeashng useof compute neworks
» the development of parallel processing hadware

» the introdudion of aternae mechanisms for interfacing to the
computer

The developmert of chesp and poweful micro-processorshas meant that mary
tasks can now be done locally, using a micro-processor, rathe than using a
certrd systen. Conmbined with the use of neworks this often mears that the
end use is unavare of exadly whee the ‘compuing’ is taking place. In a
nework you will often have a choice of severd machines, from your own ter-
mina, and each machine may suppot only a smell pait of the whole sewice
availale.

Paadlel processors hdp to remove the strict sequertial naure inheent in mary
programming languages. A simple example is addng two vectorstogehe. In a
conventiond processor,each elemert would betaken oneat atime. On a paal-
lel proassor it coud be possille to do the whole opeation at once The
widering availability of paallel processing hadwae will have an impact in
two areas. The first concerns the narrow idea of similar opeéations on daa, e.g.
multiplicaion of arrays, and the second conarns the development of suitade
agorithms for these machines. Of these the second seems the most chdlerging
area.

The magjor device for communicaing with a computer is a typewriter keyboard.
The cost of alternatves(e.g. grgphics tablets, touch sensitve saeers, mice) has
been prohibitive and has been restricted to a small percertage of the use com-
munity. The dewelopment of cheap and poweful micro-proessors has had a
signficart impad in this area. Research and development work in this area has
been going on for sometimeand it is only recently that this development work

198 Operating Systans Chapter 23

is becoming available to a wider populaton (cf. Goldbeg and Robson 1984).
Communication is now possible through ‘touch senstive vdu saeers, joys-
tick, trackbdl or mause controls, voice activaton, as well as more mundane
means.

24

Tods in programming
Man is a tod-making animal.
Berjamin FranKin.
Man is a tod-using anmal...
Without tools he is nathing
With tools he is all.
Thoma Carlyle.
Aims

The aims of this chepter are—

» tointrodwcethe ideatha there are other programs tha can help in
the programdevelopmert process

* togive somrre examples of the sors of progamsthat are available

200 Tools in programming Chapter 24

Intr odudion

When you become invdved in progamming on a regular bass it is worthwhile
consicering wha progams are available on the computer systen. You have
aready used an editor and a compiler, but these represent a small subseé of
wha is likely to be availade. The programs tha are discussed in this chapter
are given the name ‘tools’. Theseare progams tha can be usal to save time
and effort wheninvolvedin developing your own programs. They are given the
name tools becausethey serve a similar purposeto ‘tools’ tha you usein car
pentry, brick laying, ergineeing etc. You may hawe encountered the phrase
‘software engineeting’ and can thus see the origin of the word ‘tool' in this
serse.

The following tools were available on a numbe of sysens the authors have
usa. Theam heeis to shav you somne of the system for exanples of thetods
they provide

Update

This is a vety sofhisticated tod tha is useal in the devdlopment and mainte-
nance of source programs. At the simplestlevd it allows you to keep tradk of
program changes. As with mostgoal tools it can be used at a variely of levds,
and a complete undestarding of a tool like this may well take sone yeas.

Compare

Thistod shows the differences beween two text files, on alineby linebasis. It
canbe usedto compae any text fileson the computer systen. It can beusal in
conjundion with Update to compare two versionsof a program and give a list
of the changesnecessay to create onefrom the othe.

Indent/Pretty Print

A tod for indenting Fortran progams. This is a very useful tool for ‘tidying
up’ and making the structure of Fortran prograns clearer. The progam will
indent loopsetc., making the progran much easier to read and understand.

Sort/Merge

A tool for soring and merging fil es. It is a very common requiremert tha daa
will nead to be sored in some way before it can be used by anathe program.

The alove tools exist on the systen tha the authors work on. Similar tods
shout exist in some form or arother on your sysem

Chapter 24 Tools in programming 201

The load processand the loade

When you compile a program, afile is geneated. you work on, e.g. relocatable,
or object file, or binary file. The key thing is tha the file does not contan
sufficient information for the hardwere to execute it in its preseri form. Typi-
cally there is sone linking required to a library of routnes suplied by the
marufacturer, eg. if you use the sgquare root function there will be linking at
load time to the routne that evaluates squae roads. This routine has been writ-
ten by the manufacturer, and will have dready been compiled. It will exist in a
libray of precompiled routines often cdled the Fortran run time library. On
sore madines you will have been made aware of this, but on mosttimeshaing
systens this proeess will have been hidden by the provision of a sophisticated
systen program called a loacer, or link loader. There will be manuds desaib-
ing how to useand control this program on your systen, ard a chat with sone
of the support staff of your instalation is genealy the best place to stat.

Compiled routines and libr ary maintenance

There will adso be tools for the maintenance of compiled routines. These have
been given the name libraries in this book There will be tods to creste,
modify and updae libraries. On many systems these tods are very sophsti-
cated and there will be a large invesment of your time required before you
maser ther full capablity. There will be ways of contolling the load process
sotha othe sysemlibraiesand userlibraries can be‘searched or included in
the load process. Theselibraiesmay conain routines to caculate stendad sta-
tisticd fundions,plot graphs etc.

Job control languages

You get the sysemto do what you want by typing in cettain commands — e.g.
ED may invoke the editor. There are many commeands available on a computer
systen. They are often called opeating systens commeands. It is worthwhile
finding out sorre of the commards provided on your systen. There will be both
marufacturer and instdlation suppied commands.

On many systens it is possble to group thesecommandstogether sothatit will
be possilhe to invoke a sequerce of opeaating systems commands by typing in
one nane. This ‘command’ file is a ‘text’ file ard may be created using an
editor.

It is also possibé to vary the action of these command filesby the provision of
elementary progranming construds within the command fil e.

» Sd ard test sysemard job-control vanables. This will enable us
to testfor the existence of files for example, and take appropriate
action.

202 Tools in programming Chapter 24

* Loopscan besd up sotha groupsof commands can be repested,
eg. severd sets of daa, possbly from a magnetic tape could be
andysed in a similar fashim.

* Arguments can be passéd from one command file to anather, eg.
number of daa sets, file names or magneic tape identifiers.

* It is possble for one processto create anothe. Thusyou may set
ore command file executing, and depending on the progess of
this activity arother process may be geneated e.g. ajob may run
which creates a daa file, ard you can set up arother job to archive
this daafile onto magreic tape

These are only sone of thethingstha can be dore with ajob control languaye
A goodjob control language can be regarded asa primitive progamming lan
guae amd theinvestment in leaming albout the capalilities of your job control
language will geneadly repay itsdf fairly quickly.

Program development systans

Opeding systens are developed for a variety of reasons.One of these may be
the provision of a systen with facilities tha aid in the progran development
process.Oneof the opaating systens that hasbecome widely accepted for this
pumposeis UNIX. If you have accessto a UNIX sysemlocally thenit will be
worthwhile adudly going and talking to sone of the users of this systen. The
bodk The UNIX Sysem by Bourne gives sone idea of the capabilities of the
systen.

TOOLPAXK represeris a collaboraion beaween America and Britain in the
provision of a suite of portable tools and it is hoped will become widely avail-
able in both countries. One of the stated purposesof TOOLPAXK is the
provision of a stong comprehensive tool systen for proganmers who are
produdng, testng, trarsporting, or andysing modeae size mathemaica soft
ware written in Fortran

Summary

It is not the intention to offer a definitive siatement on tools here, rather to
present sone of the ways in which you can make effedive use of a computer
systen. There is a consdeable amount of software already written, tested, ard
doaumented for most computer sysens. It is well worth the effort finding out
aboutthis sotware from loca uses. It may betha you will never need to write
programs yourséf, but aways find something tha can be usedto satsfy your
own paticular requirements. However there is consideable satisfaction to be
ganedfrom the production of aneasy to use well tested and doaumented piece
of software.

Annotated Bibliography 203

Notes

Chaters 2 and 3 hawve their own self contained bibliographies, and shoud be
consuted for refererces on prablem solving and progranming languayes.

M. Abramowitz ard I. Stegun, Handlook of Mathemaical Fundions, Dover,
197

This book contans a fairly comprehensive collection of numeirica ap
proximations for many mathematicd fundions, of varying degrees of
obsairity. It is awiddy usal soure.

ANSI X333, ProggammingLanguageFORTRAN, American Nationd Stardards
Institute 1978

This is the book that defines the stardard for Fortran It is interesting
to read pats of the bodk and see how diffi cuit it is to make English
totaly unambiguots.

Association for Compuing Machiney, Collected Algorithms 1960-194, ard
Transationson Mathemaica Sofware, 1975,

A god soure of sone rather speialised algoiithms. Early algorithms
tend to bein Algol, but Fortran predominaes now.

The Bdl Systen Technical Jourral, Unix Time-Staring Systam, July August
1978, Vol.. 57, No. 6, Pat 2.

A collection of pges from the origind team tha desigred imple-
merted ard used UNIX. Extremely interesting history ard insight into
the UNIX systen.

S.R. Bourne The UNIX Sysem Addison-Wesley, 1982

A comprehersive coverage of the fadlitiesprovided by the UNIX sys
tem.

Pe Brinch—Hansen, Operaing System Principles Prentice-Hall, 1973

An ‘old’ but interesting bodk on opeaing systems. Also contains
sorre brief comments on proddem solving.

204 Annotated Bibliography

F. P.Brooks, The Mythical Man-Month, AddisonWesky, 1974
The book is a collection of essay by oneof the people respondble for
the dewvelopment of the IBM/360 opeating systen. The book is very
readeble, and amusirg in pats. It is recommerded reading for anyone
involved in progranming on a reguar basis.

0. J. Dahl, E. W. Dijkstra and C. A. R. Hoae, Stuctured Programming Aca
demic Press, 1972

This is the semind book on structured progranming.

H. Deitd, Opeating Systamns,AddisonWesky, 1984
The book gives a comprehensive coverage of most aspeds of opeat-
ing systens. The bodk also contains severad casestudies of current

opedting sysens.

M. Elsen, Corcepts of Programmirg Langlages, Sdence Reseach Assogates,
1973

Reasonable introdudion to various apseets of progranming larnguages.

A. Gddberg ard D. Rabson,Smaltalk-80: The Language and its Impementa
tion, Addison-Wesley, 1984

Thebodk presenats some of theideas and concefts involved in commu-
nicaing with a madine using a sophsticated graphicd, interadive,
programming environrment.

P.Heah, ard B. Meek, Gude to Good ProgrammingPradice, Ellis Horwood,
19M

Cortains much practical advice for the beginnea (and the nat so begin-
ne).

R.Huntand J. Shdley, Computersand CommonSense Prentice Hall, 1983

Provides a good introdudion to many aspests of computing.

Annotated Bibliography 205

M. A. Jakson Principles of Program Design, Acacemic Press,1975

In this book, Jacksondesciibes a very strudured ard professioral ap
proach to large scale computer softvare projeds. Much of wha he
says is also applicable at a smaller scale.

H. Katzen, Fortran 77, Van Nostiard Ranhold, 1978

A reasondly readable (and far more compect) desciiption of the For
tran 77 language.

B. W. Kernighan and P. J. Plauge, Sofware Tods, AddisonWesky, 1976
Interesting ‘essays’ on the programdevelopment process.

Dondd E. Knuth, TheArt of Compuer Programmig, Addison-Wesley,

Vol.1 Fundamental Algorithms 1974

Vol.2 Seminumerica algorithms 1978

Vol.3 Sorting and searching, 1972
Contains interestng insights into many apsects of agorithm desgn.
Good souce of spesialist algorithms. Knuth writes with obvious ard

infectious enthusiam (and erudtion). He may yet write the definitive
computer novd.

R. Korfhage, Logic and Algorithms Wiley, 1966
A more forma and rigorausintroduction to agorithms.

M. Metcdf, Fortran Optimizaton, Academic Press, 1982
A very useful book for anyore wishing to optimize Fortran, espesially
on large madiines. Cortains much which is relevant gengdly. An
added borusis the progam INDENT, induded in the book, which will

take a Fortran 77 progam and indert DO loops and Block If state-
merts.

Numerical Algorithms Groy, FORTRAN Library Manud, Mark 13 (seweral
volumes), NAG, 1989

Description and definition of the Fortran interface for the NAG library.
Conains desciptionsof the techniquesusel ard exanple programns.

206 Annotated Bibliography

Adrian Oldknow and Derek Smith, Learning Mathematics with Micros, Ellis
Horwood, 1983

Althowgh directed towards the progranming language BASIC, this
bodk contains mary usefll little agorithms, and is very concemed
with discussirg the reasons behind the progamming.

Lem J. Osemweil, Toolpak — An Expaimentd Sofware Devdopment Envi-
ronment Resarch Project, IEEE Transations on Software Engneering, Vol.
SE-9,No. 6, pp.673—85, Novanbea 1983
Disaussesthe gods and methods of the Toolpack prgect, providing
some notion of its scope. This software is initially ‘public doman’,
and is likely to be widdy available in the academic and reseaich com-
munities.

Rdston A. and Rabinowitz P, A First Coursein Numeical Analysis, 2"9 Edi-
tion, McGraw Hill, 1978.

Oneof the classicnumerica andysis textbooks.

W. A. Watson, T. Philipson ard P. J. Oaes,Numeical Analysis, Arnold, 1981
Subttled The Mathematics of Compuing this book provides a goad
acoount of the prablems which arise with limited machine precision,

and somre of the solutions which are possble.

G. H. Weinbeg, The Psyddogy of Compuer Programmng, Van Nostiand
Renhold, 1971

Has interesting commerts to make about the psydidogy of the pro-
grammer. Theoriginator of theterm eg-lessprogamming.

N. Wirth, Algorithms+ Data Stuctures = Programs Prentice Hall, 1976

Good presentaion of the idess involved in the disdpline of computer
programming.

Raymond Yeh (Editor), Current Trerds in Programming Methodology, Sdt-
ware Speification and Design, Prentice Hall, 1977

Cortains severd stimuating papers on the desgn process.

Annotated Bibliography 207

S. J. Young, Real Time languages, design and developmen, Ellis Horwood,
192

The first pat of the bodk contains a reasondle coverage of some of
the ideasinvolved in the desgn of a progamming language

207

ASCI| Charader Sd

Appendix A

- o O T ...Igh|.|.k|mn0pq UVWXyZ{ ~ | T
°
O d AN M ST WD ONOWWMODO ANMSZTL O©OMOWOO AdANMST LD © N~
O~ WO OO0 0000000 doddoddoddodddod dNNNOCN GNGCNGN N
OO 0O 0O 0O d d d d d A a4 A4 a4 A4 a4 A4 A4 A A4 A A4 A A A A A A A A A -
@< OAoAWL O ~ P xx 1520000 9NEFD>Z2X>N—77—=x<
ST WO ONOWO®O AN MSITLW OM~NOOMOOO 4N MSTLWONOGBOO JdN M < W
© © © © © O KR MNNMNNMNMNNNMRNRKO® O M WOWO®MOMDMOMOWMO®DM®OOD®O O O O O
- #H L oy Tk o+ T ~ O AN MO O N~ O® VoA
N M SN ONNOGOOO dANMSTLW ONO-OWOOCHNMSTILW ONODODO AN M
MO MO MO MO OHOIFIT ITI T I T T TT IO OMODLIOWWOLWWOMOMIODO © © O
= £ X x ¥ T X N =2 o= = B O I N M S X C o C Q 0O n v n v
> o 2 T oc =50 n = > = D = 3
23388583 B9S2 8E88Es8853 8
O A N MST WO O N~WOOO A N MSSTLW O©MN~NOWODO
O A N M T OM~O®WMODAAAAdA dd dd d N NN NNNNNNANO®

208 English and Latin Text Extracts Appendix B

YET IF HE SHOULD GIVE UP WHAT HE HAS BEGUN, AND AGREE TO
MAKE US OR OUR KINGDOM SUBJECT TO THE KING OF ENGLAND
OR THE ENGLISH, WE SHOULD EXERT OURSELVES AT ONCE TO
DRIVE HIM OUT AS OUR ENEMY AND A SUBVERTER OF HIS OWN
RIGHTS AND OURS,AND MAKE SOME OTHER MAN WHO WAS ABLE
TO DEFEND US OUR KING; FOR, AS LONG AS BUT A HUNDRED OF
US REMAIN ALIVE, NEVER WILL WE ON ANY CONDITIONS BE
BROUGHTUNDER ENGLISH RULE. IT IS IN TRUTH NOT FORGLORY,
NOR RICHES, NOR HONOURS THAT WE ARE FIGHTING, BUT FOR
FREEDOM - FOR THAT ALONE, WHICH NO HONEST MAN GIVES UP
BUT WITH LIFE ITSELF.

QUEM SI AB INCEPTIS DIESISTERET, REGI ANGLORUM AUT ANGLI-
CIS NOS AUT REGNUM NOSTRUM VOLENS SUBICERE, TANQUAM
INIMICUM NOSTRUM ET SUI NOSTRIQUE JURIS SUBUERSOREM
STATIM EXPELLERE NITEREMUR ET ALIUM REGEM NOSTRUM QUI
AD DEFENSIONEM NOSTRAM SUFFICERET FACEREMUS. QUIA
QUANDIU CENTUM EX NOBIS VIUI REMANSERINT, NUCQUAM AN-
GLORUM DOMINIO ALIQUATENUS VOLUMUS SUBIUGARI. NON
ENIM PROPER GLORIAM, DIUICIAS AUT HONORES PUGNAMUS SET
PROPER LIBERATEM SOLUMMODO QUAM NEMO BONUS NISI SI-
MUL CUM VITA AMITTIT.

from ‘The Dedaration of Arbroah’ ¢.1320. The English trarslation is by Sir
Janes Fergusson.

Appendix C Coded Text Extrads 209

OH YABY NSFOUN, YAN DUBZY LZ DBUYLTUBFAJ BYYBOHNX
GPDA FNUZNDYOLH YABY YAN SBF LZ B GOHTMN FULWOHDN
DLWNUNX YAN GFBDN LZ BH NHYOUN DOYJ, BHX YAN SBF LZ
YAN NSFOUNOYGNMZ BH NHYOUN FULWOHDN. OH YAN DLPUGN
LZ YOSN, YANGN NKYNHGOWN SBFG VNUN ZLPHX GLSNALV
VBHYOHT, BHX GL YAN DLMMNTN LZ DBUYLTUBFANUG
NWLMWNX B SBFLZ YAN NSFOUNYABY VBG YAN GBSN GDBMN
BG YAN NSFOUN BHX YABY DLOHDOXNX VOYA OY FLOHY ZLU
FLOHY. MNGG BYYNHYOWN YL YAN GYPXJ LZ DBUYLTUBFAJ,
GPDDNNXOHT TNHNUBYOLHG DBSN YL RPXTN B SBF LZ GPDA
SBTHOYPXN DPSENUGISN, BHX, HLY VOYALPY OUUNWNUNHDN,
YANJ BEBHXLHNX OY YL YAN UOTLPUG LZ GPH BHX UBOH. OH
YAN VNGYNUH XNGNUYG, YBYYNUNX ZUBTSNHYG LZ YAN SBF
BUN GYOMM YL EN ZLPHX, GANMYNUOHT BH LDDBGOLHBM EN-
BGY LU ENTTBU; OH YAN VALMN HBYOLH, HL LYANU UNMOD OG
MNZY LZ YAN XOGDOFMOHNLZ TNLTUBFAJ.

210 NAG Chapter Headings Appendix D

AO02 Conplex arithmetic

C02 Zeros of polynomals

C05 Root of oneor moretransendental equations
C06 Summadion of series

D01 Quaraure

D02 Ordinary differential equaions

D03 Patial differential equaions

D04 Numerica differentiation

D05 Integd equdions

EO1 Intepolaton

E02 Curwve and surface fitting

EO4 Minimising or maximising a fundion
FO1 Matrix opeationsincluding inversion
FO02 Eigenvdues and eigervectors

FO3 Determinants

FO4 Simultaneouslinear equaions

FO5 Orthogoralisaion

FO6 Linear Algebra Sugport Rouines
GO01 Simple calculations on statistical daa
G02 Cortelation and regressionandysis
G04 Anadysis of variance

G05 Randomnumbe geneaors

GO07 Univariate Estimation

G08 Nonpaametric staistics

G11 Coningency Table Analysis

G13 Time seaies aralysis

H Opeaionsresearch

MO1 Soring

PO1 Ermor trapping

S Approximationsof spesial fundions

X01 Mathematical constrts
X02 Machine constants
X03 Innerprodicts

X04 Input/Output utilities

Appendix E

Fortran Intr insic Functions

211

Name

Desciption Arguments
No. Type

Resut
Type

Example

INT

REAL

DBLE

CMPLX

ICHAR

CHAR

AINT

ANINT

NINT

ABS

Corvertstointeger 1
from integer, red,
dowle precision and
complex

Corvertstored from 1
integer, real, doubke
precision and com-
plex

Corvertsto doube 1
precision from inte-
ger, real, doubke pre-
cision and complex

Corvertsto complex 2
from integer, red
dowle precision and
complex

Corvertstointeger 1
from chaacter - nor
mally the ASCII

value.

Corvertsto character 1
from integer, nor
mally the ASCII

value.

Trunctes 1

Roundsreal ard dou 1
ble predsion. Yields
ared or doube pre
cisonanswe.

Yields neaestinteger 1

I, R,DP,

CHAR

R, DP

R, DP

R, DP

DP

CHAR

As argu-
mert

As argu-
mert

I=INT(R)

R=REAL (1)

D=DBLE(R)

Z=CMPLX(X,Y)

I=ICHAR(C)

C=CHAR()

A=AINT(R)

A=ANINT(R)

I=NINT(R)

212 Fortran Intr insic Functions Appendix E
Name Desciption Arguments Resut Example
No. Type Type
Yieldsthealsolute 1 I, R,DP, Asargu- A=ABS(B)
vaue C mert, ex-
cep com-
plex argu-
mert gives
real result
MOD Reurnstheremain- 1 |, R,DP Asargu- A=MOD(B,C)
der when firstargu- merts
mert divided by sec-
ond
SIGN Transfe of sign 2 |,R,DP Asargu- A=SIGN(A1A2)
abs(Al)if A2>=0, merts
—abs(Al)if A2<0
DIM Raurnsfirstague- 2 |, R,DP Asargu- A=DIM(A1,A2)
mert minus mini- merts
mum of thetwo argu-
merts. Al-
MIN(AL1,A2)
DPROD Doule precision 2 R DP D=DPRODR1R2)
produad of two redls
MAX Chmsesthelagest 2 |, R,DP Asagu- A=MAX(ALA2A3)
vaue merts
MIN Chmsesthe smallest 2 I, R,DP Asargu- B=MIN(B1B23)
vaue merts
LEN Lermgthof achaacter 1 CHAR I L=LEN(C)
entity
INDEX Locats ore sub 2 CHAR I I=IN-
string in arother, i.e DEX(C1.C2

returns posiion of
substmg C2 in cha-
acter expressonCl1

Appendix E Fortran Intr insic Functions 213
Name Desciption Arguments Resut Example
No. Type Type
AIMAG Imaginary pat of 1 C R Y=AIMAG(Z)
complex argument
CONJG Conjugatofacom 1 C C Z2=CONJG(A)
plex argumert
SORT Squéa&e roat 1 R,DP,C Asargu- X=SQRTY)
mert
EXP Exporertial, € 1 R,DP,C Asargu- Y=EXP(X)
mernt
LOG Natural logaithm, 1 R,DP,C Asargu- Y=LOG(X)
loge X mert
LOG10 Conmmonlogaithm, 1 R,DP As argu- Y=LOG10(X)
logio X mert
SIN Sine 1 R,DP,C Asargu- Y=SIN(X)
mert
COS Cosne 1 R,DP,C Asargu- Y=COS(X)
mert
TAN Targent 1 R,DP As argu- Y=TAN(X)
mert
ASIN Arcsine 1 R,DP As argu- Y=ASIN(X)
mert
ACOS Arccosine 1 R,DP As argu- Y=ACOS(X)
mert
ATAN Arctangert 1 R,DP As argu- Y=ATAN(X)
mert
ATAN2 Arctangert of A1/A2 2 R,DP As argu- A=ATAN2(A1,A2)
merts
SINH Hyperbolic sine 1 R,DP As argu- Y=SINH(X)

ment

214 Fortran Intr insic Functions Appendix E
Name Desciption Arguments Resut Example
No. Type Type
COSH Hypeholiccosne 1 R,DP As argu- Y=COSH(X)
mernt
TANH Hypebolictangent 1 R,DP As argu- Y=TANH(X)
mert
LGE Lexcally greater 2 CHAR L L=LGE(A,B)
thanor equd
LGT Lexcally greater than2 CHAR L L=LGT(A,B)
LLE Lexcaly lessthanor2 CHAR L L=LLE(A,B)
equd
LLT Lexcaly lessthan 2 CHAR L L=LLT(A,B)
Notes
For argument type
I=Integer
R=Red
C=Conplex
DP=Doublk Predsion
CHAR=Charager
L=Logcd

a Minimum of 2

All argles are expresséd in radians

All agumentsto an intrinsic fundion reference must be of the same type

Index

A format82 149-150
Abnormal termination 124, 172
Abstraction
« ard problem sdving 188-189
« ard stepvise refinement ard modules 22
Absdute value 117
ABS, function 117, Appendx E
ACCESS (seeOPEN) 173
ACCESS valid values 173
Accesstime 2
Accuacy53
ACM Assciation for Conpuing Machnery
166
ACQOS, function 117, Appendx E
ADA 23
Addition 46-49
Address2
Adjustalle arraysize 162
Adjustalble bound 165
Algebra9, 184
ALGOL 19
ALGOL58 19
ALGOLG60 19
ALGOL68 21
Algorithm 10, 37, 189192
Algorithm libraries 168
Alphaletics 153
Alpharumeic output 82
Alternate exits ard the RETURN staemen 172
al-Khowarami 189
Ambiguity 47, 103
Andysis 12, seedso systemsaralysis
ANSI 37
.AND. 109, 142143
APL 21
Apostrohe40, 44, 82, 149
Arccosinel17, Apperdix E
Arcsire 117, Apperdix E
Arctargent 117, Appendx E
Argumerts
 functions 117, 121, 123, 176
* subroutines 160
Arithmetic 46-57, 118
Arithmetic assigiment 41, 43
Array 58-76, 92, 162164, 184
* bourds 61, 72
* bourd tracing 134
¢ contrd structue 58
« daastrudure 58, 192
« declaration 61, 72
« elements— useof anindex 61
* DO loops 58-76
« indices61-62 72
¢ names6l, 72
« rardom ace@ssstrudure 58
 size6l, 72, 162-163

215

Artificial language 8, 9

ASCII 139, 153, Apperdix A
ASIN, function 117, Appendx E
Assemlter 5

Assemly language 5

Assigmmert statenents4l, 43
Asterisk44, 79, 85, 155, 164
ATAN, fundion 117, Apperdix E
ATAN2, function 117, Appendx E
Averagetiming of instrudions 183

Backing store103
Baclground processes$
BACKSPACE statemat 103
Backus Normal Forml9
BASIC 22
Batchoperatirg systems196
BCPL 22
Bectamé saue 10
Binary files 171
Bits 3, 52
Blark comman 176
BLANK (seeOPEN) 103, 173
Blarks 44, 63, 78, 81, 92-93 98 101, 103,
144,150, 153 173174
Blarks ard nulls on input 101, 103 173
Block (seeCOMMON)
BLOCK DATA
« ard namedCOMMON 179
* sulprogram 179-180
BLOCK IF constrict 108-111
e ELSE110411
e ELSEIF111
BN edt desciptor 101
Bottom-up proggammirg 10, 192
Braclets44, 47, 88-90
Brevity 120
Bugs 18
Bus3
Byte 2
BZ edt desciptor 101

c 22
Calcuus 9
CALL staemen 160
Capions 43
Carriag contrd charactes 93-%
Carriag retun 4, 42
Cartesia co-ordnates 163
Caseconstruct192
Cassetteasdaa storagye device 4
CDC 13

¢ number size53
Certral processo unit 2
CERN- European organisaion for Nuclear

Reseech 166

216

CHAR function 154, Appendx E
CHARACTER staemen 40, 148
Chaacter(s)37, 44, 147158
arrays 152
assigiment 39, 40, 148
compaison152, 154
concaendion operata 150, 151
conversionto integer 153, 154
daa 39, 147158
format 82, 101
functions 153-155
input 39, 101, 149-150
length 82 148
operatgs 150
output 82, 149-150
set,Fortran138, 148
stringconcaendion 150
sulstring 151152
type declaraion 40, 148
variables 40, 138, 147158, 171
Chessprablem14
Chansky ard program language development
20

Clarity in expressiors 48
CLOSE statenent83, 103, 172
CMPLX function 141, Apperdix E
COBOL 18
Collating seqerce 153, 154
Colon 44, 72,90, 151
Columns andFortran statemats 39
Colunnwise storaye 164
Commas42, 44
Commerts in proggams39, 42, 44, 193
COMMON blocks 176

* DATA statemats 175-180

* naming restrictions 176

* statenent176

e SAVE statenert 178, 179
Conmonmistales83
Conmurication betwea stbproggams176
Conpare— a sdtware tool 200
Conrpilation 134, 170

e errasl3

¢ processl34
Convpiled routines andlibrary manterarce 201
Conrpiler

e options 134-13%
COMPLEX staemen 140141
Conplex daa 140-141

« functions 140

« type 140-141

« variables 140141
Conplexty hiding and prablemsolving 189
Conplexty in progranming 189
Conpuer 2-3

« efficiency versushuman efficiengy 182

Index

* neworks 197

 speific optimisaion 182
Conputing, an introduction 1-6
Corcatenation 150-151, 191

« operate 150151
Corfusion 160
Corstart 51
Corterts of memory 2
Cortinuation 94, 123
CONTINUE stagemen 63
Cortrol structures38 62-64

« ard arrays 62

« ard corectress190
Corversion

« to charater 154

« to compdex 140

« to douwble predsion 140

« tointeger 117, 140, 153

« toreal 117, 140
Correetnessandprograns 190
Correctnessandundestandhlity 190
COSfundion 117, Apperdix E
cosine 117, Appendx E
CPU 2
Cray13
Currency symbad 148

Data

 descriptin staemens 38

« files 171

* in progjamning 38

« lines andtheCPU 3

* processig 38

* processig staemers 38, 41

* strudures192

* type 38,41
DATA statemat 178-179
« ard implied DO loops 178
DBLE fundion 140, 141, Apperdix E
Delugging ard testingproggams 134-136, 144,

18
Decimal pant 44, 79, 98
Decisims at the design stag 193
Decision making 107-115, 126132
Declaative statemats 69, 176, 178
Declaing varisbles 40, 42, 44, 139, 140, 141,
148

Defaut 98 173

« DO loop increrments64

« OPEN 173

« type for INTEGERard REAL 43

« typesfor varisbles43

* STATUS 173
Defined valuesfor variaes 178
Definition of analgorithm 189
Delimiters 149

Index

« characte strings 40, 42, 149

« list directedinput 42, 44, 102
Desig

« ard systemsaralysis 12-13

« of sdutions 189
Dewelopmen ard manterarce of prograns 200
Digits 98
Digital watches53
DIM ENSION statemat 61, 72
Dimersioning arrays in stbroutines 161-163
Direct accessfiles 173
Disks 3-4
Division 47, 48
DO loops 62-64, 72, 91-92

e ard arrays 58-76, 91

« contrd of repetition 73

* exampes63 91, 184
DO statenent62-63

« default value of increnent 64

« erd valueof index63-64, 72—73

« startvalueof index63-&4, 72—73
DOUBLE PRECISON statenert 139-140
Double predsion 139-141

« functions 139

* variables 139-140
Double quote 149
Durp 134
Duplication 119, 122, 162, 166
Dynamicallocation 163
Dynamic manipulation of array indices63

E Format80-81, 98-100, 140
Easter118-119
EBCDIC chaacterse 138
Edit descrigors 77-106
Editors 5, 200
Editor asatool 200
Ego19B-1HA
Elegaice104
Elemerts of a pragramming language37-39
Elseblock 110
ELSE statemat 110, 111
ELSEIF statenert 111
END
« ard ERR option on READ statemat 104
« option ascovert GOTO 172
* staterent40, 120-121, 122
Endof DO loop 63-64
ENDIF statenert 108
.EQ. 109, 142-143
Equality, floatingpaint 112
Equalssign4l, 42 43, 44
Equatedkeywords 85
Equatiors ard arithmeticassigmert 41
ERRoption oni/o 104, 172-173
« ard END 104

217

covert GOTO 173
Error(s)104, 111, 123,172, 191, 193
« ard the compiler 52
« detection ard corredion 133-136
« evaluding expressims 48
« opering afile 173
* readng daa 104
Evalwation of expessimsin Fortran 47
Exewtabe statenerts 44, 69, 123
Exeaution erras 134
Exit 122
EXP function 117, Appendx E
Explicit
« referecein functions 122
« type declaraions 44
Exporent 99
Exporentid naation80, 99
Exporentigion 47, 48, 117, 128
Expressios 47
Expression
« argument to functions 118
¢ evalugion 47-49, 142143
* interpretaion 47-48
* prececene 143
Extralines94
Extersiors 120

F format79-80, 98, 140
Factorid 121, 125
Fase 142
.FALSE. 142
Faulty datalO4
Field width 98
FILE 83 171172
File(s) 84, 88, 103, 170-174
* ac®@ssl73
« credion (OPEN) 83 103,171, 172
* defaultson OPEN172-173
e erd of 104
exstene (STATUS) 172, 173
* maripulation 103
« namesard unit numbers83
¢ position 88, 103
« recad lengh 173
Finite sizeof numkers53
Fixedfields on input 98-103
Flexibility 122, 162, 178
Floating point equality 112
FMT with i/o statemats 84-85
FORM (OPEN statenert) 173
FORMAT statemat 78-82, 88-95, 98-103
« A edt desciptor 82, 104, 149
« BN edt desciptor 101
« BZ editdescrigor 101
« cdon 90
« E edit descritor 80, 98-100, 140

218

« F edit descrigor 79, 98, 140

« | edt desciptor 78, 98

¢ L editdescrifior 144

« X edt desciptor 101
Formattel i/o 102, 173
Formattirg for a line printer 92-95
Formua trarslation— FORTRAN 37
Fortran18, 37

e IV 37

* 6637

e 7726, 37

* 77 Revsited 26

* 8x26

 characte set44, 148

e rules 39-40, 43-44, 47-48, 50, 55, 69, 75,

81,143,178, 181

Fundions 116125, Apperdix E

e arguments 117, 120

 characte 153, 14

« complex 140

« dauble precisian 140, 145
intrinsic 117
generic117
logical 145, Appendx E
moduarity 120, 193
* naneard fundion type 121
predefined 117, Apperdix E
reasas for 119
* recanmended use 193
 retuning avalue 122
supplying your own 120-123
statenent fundions 123-124
type 121, 145
use defined120-123

Gaussiandimination 165

.GE. 109, 143

Gereral optimisaion 18

Gererality of stbproggams193

Gereratirg new lines on termnals andlineprin
ters94-95

Gereric functions 117

GO TO statemat 127-130, 173, 192

Gramnar ard syntax37

Graphs 155, 167

.GT. 109, 143

Hardandsoft fail 167
Headngs on output 42
Help whencading 189
Hierardy of operdorsin expessims 48, 143
High-level contrd structues127
High-level prablem solving 4-5
Higher dimersionarrays 66
Historical aspects
« of Fortran 838

Index

« of problem sdving 189

IBM 138
IBM /360 operatirg system196
ICHAR function 153
ICON 25
Identifier, variabde 40-41
I Format78
IF statenent108-110, 127-128, 142
IF THEN 108
IF THEN ENDIF 108
IF THEN ELSE ENDIF 110
Imagnary part of comdex numbe 140
Implicit length of charader variable 149-150
Implicit typing 43, 139
IMPLICIT staement 139
Implied DO loop 91, 178
Incremert of DO loop contrd varigble 64, 72
Indefinite valuesfor variables 83
Indertation64
INDEX, fundion 153, Apperdix E
Index andarrays 61-62
Indicesand idertifying elemeris of aset61
Initialisation of variables 43
Inner loop 66
INPUT 84
Input and output (i/0) 3, 38, 78-8, 88-95, 98—
104
Insduble probems 14
INT function 117, Apperdix E
Integer 78
« daatype 42,43
« division 50
« expressimis and truncatian 49
* type 42,43
 variable4243
Interactive debugger 134
Interactive programs 172
Internal represatation of daa 52, 138
Intrinsic functions 117, 161, Apperdix E
Invalid DO loops 67-68
Involved expressims 48
IOSTAT (seeOPEN)173
ilo (seelnpu ard output)
 characte 82, 149-150
« complex 140
« dauble precisian 140
« END=, anderd of file 104
« ERR=,anderra corditions 104
integer 7879, 98
list directed42, 78, 84-85
logical 144
real 79-81, 98-100

Jargn 38
Job contrd languages201

Index

Jole (?) 6, 10, 51, 81
Junp 122

Keyboard 4, 40, 110, 196, 197
« acessard on line prablem solving 196
¢ acessto aconputer 196

Keyword 84

Kinds of data38

L formatl144
Labds 63
* DO loops 63
* FORMAT statemats 78
Labdled comnon 176-177
Languages4-5
.LE. 109, 143
Leadng zero63
Leapyeas 112-113
Left justificationof charaters151
Left to right order of evaluation48
LEN fundion 153, 155, 164, Appendx E
Lengh
» charactes 82, 148-149, 155, 164
« declaration 148
* recad 173
« variable41
Lexical operatas 154
e LGE.1%4
e LGT.15%4
e LLE. 154
e LLT. 154
Libraries of sulprograms 166-167, 201, Ap-
pendx D
Library functions, 117, Apperdix E
Limits 61, 72, 75
Line printers 4, 92
Linea 61
Linea list 61
Link-edita 5
LISP 20
Lists 58, 61
List dirededinput ard output 85
Listing, program 135
Loacker5
Locaionin memay ard staed data vadue 23,
41-42
LOG function 117, Apperdix E
Logarithm
* conma 117, Appendx E
« naural 117, Appendx E
Logic 9
LOGO 24
LOG10function 117, Apperdix E
LOGICAL staemen 141-145
Logical 108-110
« daatypes141

219

expressios 108-110, 127

functions 145

intersectian, .OR. 142-143

negatin, .NOT. 142-143

operatg 109, 142-143, 154

union, .AND. 142-143

unit number 84-85, 171

variables 141

Loop contrd 61-65, 127-128

Loops 93, 127128, 190

Low-level languages4

Lower bounds of DIMENSION state-mat 72,
73 75

Lower casel54

.LT. 109, 143

Magretic tape 4, 201
Mainframe operatirg systems196
Making decisis 108-113, 127-131

¢ BLOCK IF 108-110, 192

« ELSE110-111, 19

« ELSEIF111, 192

e while 127128, 12

 repeatuntil 127-128 192
Manipulation of setsof items61
Maps 66
Mathenatical evaluations 117
Matrix 61
MAX fundion 117, Apperdix E
Maximum 122, 161

« vaue 117
Mean 74
Meanirgful variable names40-41
Mechanics of carriage cortrol 93-94
Mechanismsfor manipulating tales of data61
Memory 2-3
Metonic cycle 118
Micro—conputers2
Micro—processos 196
Mini—compute's 2
MIN fundion 117, Apperdix E
Minimum 122, 161

« sizefor FORMAT 79-81

« vaue 117
Minus 44
Mixed mock arithmetic49-50, 74, 140
Mixedtype 49-50, 140-141
Moduus fundion 117, Apperdix E
MOD fundion 117, Apperdix E
Modua 23
Modua223
Moduar programmirg 120, 144, 1983
Moduesin prograns 120, 1983
Multiple argunerts 118, 122-123
Multiple selectimm between couses of action

107115

220

Multiplication47-48

NAG library 166
Namea COMMON 176-178
Namés)
BLOCK DATA sbproggam 178-179
COMMON block 176-178
constarn 51-52
function type 120, 140, 145, 155
progran 39, 42, 43-44
scqe 123 160
sulprogram (see Progam, Furction and
Subrautine)
subroutine 160
type 43, 138-139
« variable40-42
Natual language8
Negation .NOT. 142144
.NE. 109, 143
Neativeincremerts andDO loops 72, 73
Nestedcontrd structues66, 68
Nestedoops 66-69
Netwaks 197
NEW (se2 OPEN ard STATUS) 172
New line 92-4
NINT function Apperdix E
Norexecuablestatemats 69
.NOT. 109, 142-143
Notations 9
Null 98, 101
NULL (se2 OPEN ard BLANK) 173
Numerals153
Numeric
* input 97-106
e output 78-81, 140
 type (seeReal, Integer, Douwble Precision
ard Complex)
Numerical Algorithms Group 166, Apperdix D
Numerical Analysis 53
Numerical errors 53-54
Numerical sdution 128

Oblique44, 94-95, 102
Octal numbers138
OLD (seeOPEN and STATUS) 173
ON/OFF switch141
Onedimensimal arrays 61
OPEN statenert 83, 103 171-173
« sunmaryof options 173-174
Opeaating systens 5, 32-34, 35, 195-198
« ard their histay 196
e 1940to 1990, 196-197
Opeator(s)47, 109, 142, 143, 150, 153
s prececene 48143
Optimisation181-187
* DO loops 184

Index

* rearragng expgessios 184
.OR. 109, 143
Orde of evaluation47-48, 143
Orde of statenerts (see Dedarative and Ex-
ecutabe) 44, 69, 123 179
Out of range vaues 79, 83
OUTPUT 84-&%
Output
« arrays with implied DO loops 91
« extensin 87-96
« introduction 77-86
 characte 82, 149-150
« complex 140
» devices4
« dauble precisian 140
integers78-79
list directed84-8
logical 144-145
* numeric (seeReal, Integer, Double Preci-
sionard Complex)
¢ reals79-81
¢ spxes81-82
« unt (seelLogicd unt numbe)
Oveflow 83
Oveprint 93

Page throws and lineprinter output 93-%

Parallel processing197

PARAMET ER statenert 51-52

Parenttesis44, 90

PASCAL 21

Pattern matching andedtors 34

Patternal output 90

Pencil and pager prepaation11

Period (seeDedmal point)

Persoral compuers196

Photatypesettes asoutput devices 4

Physical recad unit 88

Plottersasoutput devices4, 167-168

Plotting routines and subroutine libraries 167—
168

Plus 44, 92

PL/121

Polynomial evalugion ard optimisation 183—
184

Positionin files 88

Positional dependene 84

Post matem dump134-13%

Postscrig 24

Prececene, operata 48 143

Precisionard accuracy of numbers52-54

Predefined functions (seeLibrary fundions)

Prediction of action of a program 190

Prepardion 11

Presetdaa vaues83

Prime (seeapaostrophe) 40, 44, 148, 149, 153

Index

Primitive(s) 127
¢ Fortrandatatypes 192
 tods 10
PRINT statenert 39, 40, 78, 84
Printer, line printer output 92-95
Printing out tabdes using DO loops 74
Priority in evalugion 47-48, 143
Problem solving 7-15, 18314
Profiling tods ard optimiséion 18
PROGRAM
statenent 39, 42
ANALYS 177
AVERAG 42
BREAK 130
CONVRT 74
DATE 112-113
DIAGRM 155-156
EASTER 118119
EXAMPL 176
FACTOR 124
FIND 127
FLEX 172
FRONT 121
INOUT 39
LOCS8 66
MEANSD 74-%
NAGEX1 166
QROOTS112
RAIN 63
REDO 84
RESULT 72
SIMPLE 160
SOLVE 165
SUMAVE 65
THEATR 68
TIME 51
TRIAL 120
ZONE 73
Program (see Furction, Sulprogram, Subou
tineandBlock Datg
» development systems202
* exection 134,17
« library 166-167, 201
Program language development ard engneer-
ing 17
Progranming, anintroduction 36-45
Progranming
« languages, elemeris of 16-30, 37-39
« daa descriptin staemens 38
e contrd structues38
« daa processig staemerts 38
« input and output statemats 38-39
Progranming languages
* ADA 23
« APL 21
* ALGOL58 19

221

ALGOLG60 19
ALGOLG68 21
Basic22
BCPL 22
« C22
Colol 18
ICON 25
Lisp 20
Logo 24
Modua 23
Modua2 23
Pascal 21
PL/121
Postscrig 24
Prolog 25
Simula 21
Smalltalk 25
Snobol 20

« SQL 25

s TeX 24
PROLOG 25
Punduation 148 153
Purge 33

Quaratic112
Quaueirg 92
Quades149

Rardom acessmenory (RAM) 3
Rardom ac@ssto an array 58
Rarge on interral numbers53-54
READ statemat 39, 40, 42, 43, 102
Readng 97-106

« blanks, nulls, ard zeros101, 103, 173-174

 charactes 39, 101, 149-150

« complex 140

« dauble precisian 140

* integers98

« logicals 144-145

* reals98-100

« skipping spaces andlines 101-102
REAL 117, Appendx E

* statenent42-43
Real

« daa strwctures ard program daa structures

192

* input 98100

« functions 117, 140

« pat of imaginary number 140

. type 42,139

* variables 41-42
Recipe assguene of opeatiors 10
RECL (see OPEN) 173
Recad(s) 38-39, 88, 102

« length (seeOPEN and RECL) 173

« asstbdvision on afile 88

222

« in Fortran 88, 103
Rectagqular array 164
Recusion (seerecursia) 165
Reduction of comgexity usirg strwctured pro-

gramming 190

Redindart instructions 182
Referacing a setby a single name61
Referecing an itemof asd 61
Refinremern (seestep-wiserefinement)
Relatind expessims 109, 110, 143
Relatind operatas 109, 143
Remander 117
Repeatuntil constrict 127-128, 131
Rereatirg statenerts 38
Reretition

« ard output 88-89

« contrd andDO loops 58-70

« contrd, Reped andWhile loops 126-132
Repesemationof data190-191
Restrictions on datatypes in COMMON blocks

176

Restrictios using functions 122
RETURN stdemen 122, 172
REWIND staemen 103
Rewriting programsard optimisation182
Right justification78, 98
Road

e square117

e cube 123

* imagnary 140

e real112
Rowdng 49-50

¢ F and E edit descrigor 79-80
Rouing 92
Rules 41, 43, 120
Runtime 63

* débuggng 135

SAVE statenert 177-178

« ard COMMON blocks 177-178
Scale fadorsin i/o 80, 99-100
Scientific natation 80, 98-100
SCRATCH (seeOPEN ard STATUS) 172,173
Selection betweencoursesof action 108
Separdor, list directedinput 42
Sequenc to staemerns 39, 191
Seguene aspart of aprablemsolution 10
Seguentid andrardom files 173
Sequentid flow in a program 191
Sets 58

« of data58, 172
SHARE index167
Significant digits 53, 78, 80, 99
SIGN fundion Appendx E
Silly erras 38
Simula 21

Index

Simultareaus equéions 119, 165-166
SIN fundion 117, Apperdix E
Sine function 117, Appendx E
Single predsion 141
SINH funcdion Appendx E
Size of numbers52, 79-80
Skipping
* pages93
« recadson input 101-102
* spaesard lines101-102
Slash (seeobique) 44
* outpu contrd chaacter94-95
Smalltalk 25
Snohbol 20
Software 4-5
 ergineeeriy and tods 200
Soluble probems 14
Solution to prablems 14
Sorting ard merging datafiles 200
Spaces 42, 81
Specid chaacters
« asterisk(far too often)
apostrgphe astext ddimiter 40, 149
cdonin sibstrigs 151
cdon in DIMENSION statenent 72
cdon with edt descriptas 90
equalssign in assigiment 41
for line printer cortrol 92
peiod with logicd operatas 109
« slashor oblique with i/o 94-95, 102
Spelling erras when proggammirg 37
Spoding 92
SQL 25
Square roat 117, Apperdix E
SQRT function 117, Appendx E
Standard deviation 74
Start (DO loop initial vaue) 64
Statement(s)
« continuatian 94, 123
« functions 123
« in apragramming language38-39
* label 63 78
« of a prodem in a progamning language
189
¢ seqlerce 39, 191
Stetic aspectsof arrays in Fortran163
STATUS (see OPEN) 172-173
Stepsin a prablem soluion 10, 189
Step-wiserefinement 11, 193
Stirling’s approximation 124
STOP statemat 172
Storage of arraysin menory 163-164
Strong typing 144
Structure in data192
Structure of COMMON blocks 177
Structured programning 22, 104, 190

Index

« ard corectressof soluion 190
Structurelessprograms190
Strict syrtax 38
Stylisedlanguege 8
Subproggam 119, 160, 172, 176
SUBROUTINE usae 160-165
Subroutine 159-169

* libraries 166-168

« librariesard plotting 167-168
Subscipts ard arrays61-62, 92
Substrirg(s) 151

¢ checking 136
Subtraction 47-48
Systemsanalysis ard design11
aralysis12
design12-13
evaludion andtestirg 13
feasihlity study ard fad finding 12
implemenation 13
initial systemdesig 12
mairterane 13-14
prablem ddfinition 12

Tabkeys 39
Tableof data59-60
Talking at the design stag 193
Tektranix termirals 167
TAN function 117, Apperdix E
Tangert function 117, Apperdix E
TANH function Apperdix E
Tape maqietic4
Techicd termirology 9
Tempraryvariables andoptimisation 183
Termiral 4, 40, 94
Termiral output ard a record 88-89
Termiratinga usersulprogram 121, 122, 160
Termirationof a program40, 172
TeX 24
Text

« files 171

 formatting154

« strings onoutput 82
Textual message 42
THEN (see IF)
Tidying up prograns 200
Timestaring5, 171, 196, 201
Timestaring operatirg systems5
Time zoneexanple 73
Titling 156
Tolerancel28
Todpadk asadewelopment system202
Tods in proggammirg 199-202
TOMS - Transations on Mathemati@al Soft-

ware 168

Top of pageonline printer output 92-93
Top-down progranming 10, 192-193

223

Trailing blanks 78
« in charaterstrings 151
Triande 124
Trigonometric fundions 117
Transfomatiand granmar 20
True 141
.TRUE. 142
Truncation 49-50, 141
¢ acrssan= sign49
 charactes 150
« integer division 50
Truthtables 143
Turing 17
Two digit arithmetic53
Type 41
« conversion implicit 49, 50
« conversion functions 140, 153-154
« daa40
daa ard allowaHe operations 40
declarations 42
explicit 43, 139
functions 117, 120-122, 145, 153-155
implicit, 144
loop cortrol variabe 72, 75
mixed 49-50, 140-141
strorg 40, 144, 148
* weakl4
Typing errors52

Unambiguous problem definition 37

Undefined valuesfor variabes 83, 177-178

Unformatted output 173

UNIT (seei/o statemats) 83-84, 173

UNIX 22 197,202

UNKNOWN (see OPEN and STATUS) 172—
173

Unramel COMMON, (seeblark COMMON)

Until, repeat127-128

Updating 74

Upper boundonarrays 61, 72, 75

Userdefined functions 120

Value 40

Variale 4041

Variade dimersionarrays 162-164
Variade typing 138-139

Variale length characte strings 155
Vecta 58 61

Vecta plotting 167-163

von Neumaan17

Waves 129-130

Weaktyping 144

Weigtt of charatersin Fortran 153-154
Wheéd 166

While strwcture 127, 129, 192

224 Index

Width 80, 98
Word
e length139
* processig 154
Workspae for arrays167
WRITE statenert 84-85, 89-%, 102
Writing, and output 84-85

X edt desciptor 78 101-102
X3J337, 81

YES/NO switch141

Zero92, 93, 94, 101, 103, 129, 174
ZERO (se= OPEN ard BLANK) 103, 174

